Identifying Data 2019/20
Subject (*) Stochastic numerical methods Code 614855226
Study programme
Mestrado Universitario en Matemática Industrial (2013)
Descriptors Cycle Period Year Type Credits
Official Master's Degree 1st four-month period
First Optional 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Matemáticas
Coordinador
Vazquez Cendon, Carlos
E-mail
carlos.vazquez.cendon@udc.es
Lecturers
Calvo Garrido, María Del Carmen
Vazquez Cendon, Carlos
E-mail
carmen.calvo.garrido@udc.es
carlos.vazquez.cendon@udc.es
Web http://www.m2i.es
General description Impartiranse coñecementos relacionados co cálculo estocástico e as ecuacións diferenciáis estocásticas, así como coas súas técnicas numéricas asociadas. Tamén se presentarán exemplos de problemas nos que xurdan estos conceptos e técnicas.

Study programme competencies
Code Study programme competences
A1 Alcanzar un conocimiento básico en un área de Ingeniería/Ciencias Aplicadas, como punto de partida para un adecuado modelado matemático, tanto en contextos bien establecidos como en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares.
A2 Modelar ingredientes específicos y realizar las simplificaciones adecuadas en el modelo que faciliten su tratamiento numérico, manteniendo el grado de precisión, de acuerdo con requisitos previamente establecidos.
A3 Determinar si un modelo de un proceso está bien planteado matemáticamente y bien formulado desde el punto de vista físico.
A4 Ser capaz de seleccionar un conjunto de técnicas numéricas, lenguajes y herramientas informáticas, adecuadas para resolver un modelo matemático.
A5 Ser capaz de validar e interpretar los resultados obtenidos, comparando con visualizaciones, medidas experimentales y/o requisitos funcionales del correspondiente sistema físico/de ingeniería.
A7 Saber modelar elementos y sistemas complejos o en campos poco establecidos, que conduzcan a problemas bien planteados/formulados.
A8 Saber adaptar, modificar e implementar herramientas de software de simulación numérica.
B1 Saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios, incluyendo la capacidad de integrarse en equipos multidisciplinares de I+D+i en el entorno empresarial.
B2 Poseer conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación, sabiendo traducir necesidades industriales en términos de proyectos de I+D+i en el campo de la Matemática Industrial
B3 Ser capaz de integrar conocimientos para enfrentarse a la formulación de juicios a partir de información que, aun siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos.
B5 Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo, y poder emprender con éxito estudios de doctorado.

Learning aims
Learning outcomes Study programme competences
Knowing and applying different numerical methods for solving stochastic differential equations (Euler, Mistein, Taylor, etc.) and their computer implementation to solve examples of real problems AC4
AC5
AC8
BC1
BC2
BR1
Knowledge of Ito calculus and application to different examples of finance and other applied sciences AC1
AC5
AC7
BJ1
BC1
BR1
Understand concepts and results related stochastic differential equations and the fields of application of these to real problems AC2
AC3
AC7
BJ1
BC2
BR1
Concepts and results related to stochastic processes are introduced and fields of application thereof shall be indicated AC1
AC7
BJ1
Knowledge of Monte Carlo methods and its application to solve problems AC2
AC4
BC2
BR1

Contents
Topic Sub-topic
1. Introduction to stochastic processes
2. Monte Carlo Methods
3. Ito calculus
4. Stochastic differential equations
5. Numerical methods for stochastic differential equations

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Problem solving 0 60 60
Problem solving 0 36 36
Objective test 4 0 4
Guest lecture / keynote speech 42 0 42
 
Personalized attention 8 0 8
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Problem solving - The .pdf documents contain simple exercises for review and application of concepts
- Further references are indicated where you can find exercises related to the exposed subjects
Problem solving A set of problems are posed to be solved at home, some are shorter and others require greater dedication
Objective test Problems staments are delivered to the student to be solved, for this purpose the student can use the slides that have been presented in class by the teacher
Guest lecture / keynote speech - Previously to lecture sessions, a .pdf document with the contents of the lecture is delivered to students.
- Table PC and videoconferencing systems will be used to allow the following of the lectures form the different campus.
- Participation of students with questions and comments to be discussed during lectures will be encouraged. Also the questiones eill be solved and remarks will be illustrated by using Windows Journal computer application when necessary.

Personalized attention
Methodologies
Problem solving
Description
Exercises of students will be reported and their results will be discussed

Assessment
Methodologies Competencies Description Qualification
Problem solving Valoraranse os exercicios propostos en clases para a súa realización fóra de clases 50
Objective test In afixed date a written practical exam of the knowledge of the subject in fixed date will held. In case of failing, also at a later date an additional recovery exam of the same type will take place. 50
 
Assessment comments

Sources of information
Basic T. Mikosh (1998). Elementary stochastic calculus with finance in view. World Scientific
P. Glasserman (2004). Monte Carlo methods in financial engineering. Springer
P. Kloeden, E. Platen (1992). Numerical solution of stochastic differential equations. Springer
B. Oksendal (1998). Stochastic differential equations. An introduction with applications. Universitext, Springer

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Mathematical modeling in finance/614855211

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.