Identifying Data 2019/20
Subject (*) Machine Learning Code 614G01038
Study programme
Grao en Enxeñaría Informática
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Third Optional 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Ciencias da Computación e Tecnoloxías da Información
Computación
Coordinador
Rivero Cebrián, Daniel
E-mail
daniel.rivero@udc.es
Lecturers
Porto Pazos, Ana Belen
Rivero Cebrián, Daniel
E-mail
ana.portop@udc.es
daniel.rivero@udc.es
Web
General description Esta asignatura presenta unha visión global do aprendizaxe automático. No temario explícanse as distintas técnicas e métodos, incluíndo aprendizaxe supervisado, non supervisado e por reforzo. Na parte práctica realizarase a resolución dun caso real.

Study programme competencies
Code Study programme competences
A45 Capacidade para coñecer e desenvolver técnicas de aprendizaxe computacional e deseñar e implementar aplicacións e sistemas que as utilicen, incluídas as dedicadas á extracción automática de información e coñecemento a partir de grandes volumes de datos.
B1 Capacidade de resolución de problemas
B9 Capacidade para xerar novas ideas (creatividade)
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences
Know the different machine learning techniques and apply them correctly. A45
B1
B9
C2
C6
C7
C8
To be able to combine the results of different techniques. A45
B1
B9
To be able to correctly compare the results obtained with different techniques. A45
B1
C2
Learn and apply the methodology of using these techniques in the resolution of real problems. A45
B1
B9
C2
C6
C7
C8

Contents
Topic Sub-topic
Unit 1: Introducción 1.1. Introduction to Machine Learning
1.2. Introduction to Inductive Learning
Unit 2: Supervised Learning 2.1. Introduction
2.2. Support-Vector Machines
2.3. Decision Trees and Rules
2.4. Regression. Regression Trees
2.5. Bayesian Learning
2.6. Instant-Based Learning
2.7. Artificial Neural Networks
Unit 3: Unsupervised Learning 3.1. Unsupervised learning: clustering
3.2. Unsupervised neural networks
Unit 4: Reinforcement Learning 4.1. Markov Decision Processes
4.2. Reinforcement Learning
Unit 5: Other concepts 5.1. Deep Learning
5.2. Evaluation and hypotheses contrast
5.3. Metaclassifiers

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A45 C7 C8 21 42 63
Laboratory practice A45 B1 B9 12 24 36
Supervised projects A45 C2 C6 7 19 26
Objective test A45 C8 C7 2 20 22
 
Personalized attention 3 0 3
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Theoretical teaching of the subject matter of the course
Laboratory practice Solve a practical problem by using the different techniques that will be explained in the theory classes.
Supervised projects Writing, under the supervision of the teacher, of the report explaining the resolution of the problem carried out in the laboratory practices and the results obtained. This work must be presented in class.
Objective test This is a written assessment test in which the student must demonstrate the knowledge acquired from the subject.

Personalized attention
Methodologies
Supervised projects
Laboratory practice
Description
Practical work carried out with the advice of the teacher.
Writing of the explanatory report under the teacher's supervision.

Assessment
Methodologies Competencies Description Qualification
Objective test A45 C8 C7 Preguntas de tipo test sobre os contenidos da asignatura, baseada nas distintas técnicas de aprendizaxe computacional e as súas sus aplicacións. 60
Supervised projects A45 C2 C6 Redacción da memoria relativa á resolución do problema real realizado nas prácticas de laboratorio. A redacción da memoria incluirá a realización dunha revisión bibliográfica dos traballos máis importantes relacionados, escritos na súa inmensa maioría en inglés, documentación sobre o problema a resolver, metodoloxía utilizada, e comparación dos resultados atopados na aplicación das distintas técnicas, así como unha valoración crítica tanto dos resultados obtidos como da información utilizada. 20
Laboratory practice A45 B1 B9 Resolución dun problema do mundo real utilizando a metodoloxía, para o cal se utilizarán varias técnicas explicadas en teoría, e estimularase ao alumno a xerar novas ideas para a resolución deste problema.
20
 
Assessment comments

In order to pass the subject, the student must obtain a minimum score of 5 out of 10 in the result of combining the grades of the objective test, the laboratory practices and the supervised works. In addition, the student must obtain a minimum score of 2.4 out of 6 points in the objective test. If the student does not obtain this minimum grade, the grade of the subject will be that corresponding to the grade of the objective test.

In the second opportunity, the grade obtained in the laboratory practices and supervised works will be maintained, not being able to obtain again a grade since it results from the continuous evaluation of the work during the credits of practice of the subject. The student can retake the examination of the objective test, the criteria for obtaining the total score being those indicated at the beginning of this section.

Part-time students must turn in their papers on the same date as full-time students, and attend the GRTs in which they will be corrected. Similarly, it is recommended that you attend the practice classes.


Sources of information
Basic D. Borrajo, J. González, P. Isasi (2006). Aprendizaje automático. Sanz y Torres
Basilio Sierra Araujo (2006). Aprendizaje automático: conceptos básicos y avanzados. Aspectos prácticos utilizando el software WEKA. Pearson Education
Ethem Alpaydin (2004). Introduction to Machine Learning. MIT Press
David Aha (). Lazy Learning. Kluwer Academics Publishers
T.M. Mitchell (1997). Machine Learning. McGraw Hill
Richard Sutton, Andrew Barto (). Reinforcement Learning. An Introduction. MIT Press
Saso Dzeroski, Nada Lavrac (). Relational Data Mining. Springer
Andrew Webb (2002). Statistical Pattern Recognition. Wiley

Complementary


Recommendations
Subjects that it is recommended to have taken before
Programming I/614G01001
Programming II/614G01006
Statistics/614G01008
Algorithms/614G01011
Intelligent Systems/614G01020

Subjects that are recommended to be taken simultaneously
Knowledge Representation and Automatic Reasoning/614G01036

Subjects that continue the syllabus
Computer Vision/614G01068
Robotics/614G01098

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.