Identifying Data 2020/21
Subject (*) Electricity and Electronics Code 631G01206
Study programme
Grao en Náutica e Transporte Marítimo
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Second Obligatory 6
Language
Spanish
Teaching method Hybrid
Prerequisites
Department Enxeñaría de Computadores
Coordinador
Bregains Rodriguez, Julio Claudio
E-mail
julio.bregains@udc.es
Lecturers
Andión Fernández, José Manuel
Bregains Rodriguez, Julio Claudio
E-mail
jose.manuel.andion@udc.es
julio.bregains@udc.es
Web http://campusvirtual.udc.es
General description Nesta materia búscase que o alumno adquira os coñecementos básicos de compoñentes e circuítos que conforman os sistemas eléctricos e electrónicos do buque. Devanditos coñecementos permitiranlle evaluar o funcionamento dos sistemas de potencia, control y comunicacións do barco, ademais de adquirir xuízo crítico para detectar fallos e resolvelos.
Contingency plan 1. Modificacións nos contidos
Non hai cambios nos contidos.
2. Metodoloxías
*Metodoloxías docentes que se manteñen
Sesións maxistrais, de resolución de problemas e prácticas a través das TIC.
*Metodoloxías docentes que se modifican
Se a docencia fose non presencial, cambiaríase o uso de diapositivas e taboleiro por explicacións con diapositivas en Teams (impartidas no horario de clase) e/ou copia de diapositivas con explicacións detalladas en Moodle (campusvirtual.udc.es), en formato pdf. Estarían dispoñibles en Stream as clases non presenciais impartidas por Teams e/ou os pdf en Moodle (campusvirtual.udc.es). As prácticas de laboratorio adaptaríanse para poder ser realizadas de xeito non presencial co apoio das TIC mediante vídeos, tarefas interactivas de arrastre de texto/vídeo, etc.
3. Mecanismos de atención personalizada ao alumnado
As titorías faranse por Teams.
4. Modificacións na avaliación
Podería cambiarse a duración das avaliaciones e o número de preguntas nos tests.
*Observacións de avaliación:
A proba mixta e/ou a proba de resposta breve e/ou tests poderían ser non presenciais, se as circunstancias así o recomendan.
5. Modificacións da bibliografía ou webgrafía
Estarían dispoñibles en Stream as clases non presenciais impartidas por Teams e/ou os pdf de Moodle. Os materiais das prácticas xa estarán de maneira dixitalizada en Moodle (campusvirtual.udc.es).

Study programme competencies
Code Study programme competences
A6 Localizar avarías sistematicamente nun equipo electrónico.
A8 Modelizar situacións e resolver problemas con técnicas ou ferramentas físico-matemáticas.
A9 Avaliación cualitativa e cuantitativa de datos e resultados, así como representación e interpretación matemática de resultados obtidos experimentalmente.
A10 Redactar e interpretar documentación técnica e publicacións náuticas.
B2 Resolver problemas de xeito efectivo.
B5 Traballar de forma autónoma con iniciativa.
B6 Traballar de forma colaboradora.
B8 Aprender en ámbitos de teleformación.
B10 Versatilidade.
B11 Capacidade de adaptación a novas situacións.
B12 Uso das novas tecnoloxías TIC, e de Internet como medio de comunicación e como fonte de información.
B13 Comunicar por escrito e oralmente os coñecementos procedentes da linguaxe científica.
B14 Capacidade de análise e síntese.
B15 Capacidade para adquirir e aplicar coñecementos.
B16 Organizar, planificar e resolver problemas.
B19 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
B22 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C10 Que os estudantes saiban aplicar os coñecementos adquiridos e a súa capacidade de resolución de problemas en contornas novas ou pouco coñecidas dentro de contextos máis amplas (ou multidisciplinares) relacionados coa súa área de estudo
C13 Que os estudantes posúan as habilidades de aprendizaxe que lles permitan continuar estudando dun modo que haberá de ser en grande medida autodirixido ou autónomo.

Learning aims
Learning outcomes Study programme competences
Be able to interpret electrical diagrams. A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13
Be able to analyze electrical installations. A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13
Practical applications of analog and digital integrated circuits, and solid state devices. A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13
Know the electrical alternators. A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13
Evaluate powers. A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13
Know the operation of electronic instrumentation. A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13
Knowledge of the characteristics of basic semiconductor devices A6
A8
A9
A10
B2
B5
B6
B8
B10
B11
B12
B13
B14
B15
B16
B19
B22
C10
C13

Contents
Topic Sub-topic
CHAPTER 1: INTRODUCTION. DIRECT CURRENT CIRCUITS. 1.1. The atom. Electric charge and force. Electrical conductors and insulators.
1.2. Mechanical and electrical quantities: work, energy, voltage, current, power.
1.3. Electrical resistance. Ideal sources.
1.4. Ohm's law. Joule's law. Series and parallel circuits. Kirchhoff's Laws.
1.5. Real sources. Circuit theorems: superposition, Thévenin, Norton.
1.6. Circuit analysis.
CHAPTER 2: ALTERNATING CURRENT CIRCUITS. TRANSFORMERS. 2.1. Time-dependent functions. Fundamental values.
2.2. Sine regime, and behavior of R, L and C.
2.3. Impedance and admittance. Resonance.
2.4. The ideal transformer.
2.5. Circuit theorems: superposition, Thévenin, Norton.
2.6. Circuits analysis.
CHAPTER 3: MANOEUVRING AND CIRCUIT BREAKERS. GENERATION AND DISTRIBUTION OF ENERGY. ELECTROMECHANICAL SYSTEMS.
3.1. Fundamentals of three-phase systems
3.2. Control and protection elements for installations.
3.3. Fundamentals of generators and motors.
3.4. Electric propulsion for ships.
3.5. Analysis of circuits and drawings of installations.
CHAPTER 4: SEMICONDUCTORS. DIODES. APPLICATIONS.
4.1. Fundamentals: intrinsic and extrinsic semiconductor
4.2. Currents in a semiconductor. Polarized PN junction.
4.3. Basic structure and operation of PN diodes and LEDs.
4.4. Diode equivalent models.
4.5. Applications. Rectifier circuits.
4.6. Other diodes.
CHAPTER 5: BIPOLAR JUNCTION TRANSISTOR. 5.1. Basic structure and operation of a bipolar transistor
5.2. Circuit analysis in common emitter configuration.
5.3. Input and output characteristics.
5.4. Switching circuits.
CHAPTER 6: UNIPOLAR MOSFET TRANSISTOR. 6.1. Basic structure and operation of a MOSFET.
6.2. Circuit analysis in common source configuration.
6.3. Input and output characteristics.
6.4. Switching circuits.
CHAPTER 7: AMPLIFIERS GENERAL CONCEPTS. THE OPERATIONAL AMPLIFIER. 7.1. Characteristics of the amplifiers.
7.2. Concept of negative feedback.
7.3. The operational amplifier. Linear and non-linear applications.
7.4. Circuit analysis.
CHAPTER 8: DIGITAL CIRCUITS. APPLICATIONS.
8.1. Fundamentals of digital circuits.
8.2. Analogical-digital conversion.
8.3. Applications: communications, fundamentals of a digital communications system.
8.4. Introduction to Radar systems.
PROBLEM SOLVING SESSIONS. SESSION 1:Introduction and concepts of circuits.
SESSION 2: Laws of circuits and methods of analysis.
SESSION 3: Analysis of sinusoidal circuits.
SESSION 4: Analysis of sinusoidal circuits.
SESSION 5: Resolution of problems of fundamentals of energy distribution.
SESSION 6: Analysis of circuits with Diodes and Rectifiers.
SESSION 7: Analysis of circuits with Bipolar Transistors.
SESSION 8: Analysis of circuits with Bipolar Transistors.
SESSION 9: Analysis of circuits with Unipolar Transistors.
SESSION 10: Analysis of circuits with Operational Amplifiers.

LABORATORY PRACTICES. PRACTICE 1: EQUIPMENT HANDLING (I).
1.1. Feeding source and multimeter.
1.2. Measurement of resistances.
1.3. Measurement of DC voltages and currents with multimeter.

PRACTICE 2: EQUIPMENT HANDLING (II).
2.1. Signals generator and oscilloscope.
2.2. Measurement of AC voltages with multimeter and oscilloscope.
ITC PRACTICALS. Circuit design and measurement practices will be carried out with the LTSpice software according to the theory syllabus.
O desenvolvemento e superación destes contidos, xunto cos correspondentes a outras materias que inclúan a adquisición de competencias específicas da titulación, garanten o coñecemento, comprensión e suficiencia das competencias recollidas no cadro AII/2, do Convenio STCW, relacionadas co nivel de xestión de Primeiro Oficial de Ponte da Mariña Mercante, sen limitación de arqueo bruto e Capitán da Mariña Mercante ata o máximo de 3000 GT.Cadro A-II/2 do Convenio STCW.
Especificación das normas mínimas de competencia aplicables a Capitáns e primeiros oficiais de ponte de buques de arqueo bruto igual ou superior a 500 GT.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C13 C10 30 39 69
Problem solving A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 10 20 30
Mixed objective/subjective test A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 3 0 3
Laboratory practice A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 10 10 20
ICT practicals A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 10 10 20
Supervised projects A8 A9 A10 B2 B5 B10 B11 B12 B13 B14 B15 B16 B19 B22 1 4 5
Short answer questions A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 1 1 2
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Didactic exposition, using slides and blackboard of the theoretical content of the subject.
Problem solving Approach and resolution of problems related to the contents of the subject.
Mixed objective/subjective test Mixed exam written by the theory Professor about the contents of the course.
Laboratory practice Students will work on a series of practices in the Electronics Laboratory working with an electronic practice board and the available measurement materials. The students will have to answer corresponding sets of questions related to the themes to be developed in each practice.
ICT practicals Students will work on a series of practices on a PC using the electronic circuits simulator LTspice. The students will have to answer corresponding sets of questions related to the themes to be developed in each practical.
Supervised projects The students could carry out autonomously a work proposed by the practice teacher using the software tool (ICT) of simulation of electronic circuits LTSpice. Additionally, at the end of the course and for all students who pass the course, it may be requested to do additional work to qualify for a raise in grade (see assessment section). The subject of this additional work will be proposed by the teacher and will be related to some of the contents of the course.
Short answer questions Os alumnos deberán responder a un conxunto de preguntas relacionadas cos temas a desenvolverse en cada sesión de prácticas.

Personalized attention
Methodologies
Supervised projects
Laboratory practice
Guest lecture / keynote speech
ICT practicals
Problem solving
Description
Teaching session: To attend and solve the student's inquiries in relation to the theoretical subject exposed in the teaching sessions.

Problem solving: To attend and solve the student's inquiries related to the problems solved in class.

Laboratory practices: To attend and solve the student's inquiries related to the practices proposed or carried out in the laboratory.

Practices through ICT: To attend and solve student's inquiries related to the practices proposed or carried out through ICT.

Personalized attention: In relation to the theory and problem solving classes, tutorial hours will be preferably used in an individualized way. Tutorials will be non-presential, through Teams.
In relation to the practical classes, the tutorial hours will be used preferably in an individualized way, being also possible the use of the electronic mail. The tutorials will be non-presential, through Teams.

Assessment
Methodologies Competencies Description Qualification
Supervised projects A8 A9 A10 B2 B5 B10 B11 B12 B13 B14 B15 B16 B19 B22 It will consist of the evaluation of the proposed work on the subject and tutored by the teacher. The student who passed the course (see "Assessment comments"), may request an additional tutored work (see "Step 5: Methodologies"), whose maximum grade will be 1 point. 0
Laboratory practice A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 The work done by the student in each of the sessions will be valued.
Students with part-time dedication or with academic dispensation from teaching exemption will have the option of taking a laboratory practice test at the end of the course.
4
Guest lecture / keynote speech A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C13 C10 It will be possible to value the attendance to class and the participation of the student in the works proposed by the professor throughout the course in the magisterial sessions, of resolution of problems and tutorships. 0
ICT practicals A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 The work done by the student in each of the sessions will be valued.
Students with part-time dedication or with academic dispensation from teaching exemption will have the option of taking an ICT practice test at the end of the course.
4
Mixed objective/subjective test A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 It will consist of two theoretical exams and problem solving on the contents exposed throughout the course during the lectures sessions, evaluating the understanding of such contents, and its application to problem solving. 60
Problem solving A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 It will consist of problem-solving assessment through a set of tests. On dates indicated by the teacher, the student will have to answer a test consisting of 2 short problems and a question whose answer must be reasoned. In order to pass the test, students must correctly answer at least two of these three simple points. To pass the course, the student cannot fail more than three of these tests. 30
Short answer questions A6 A8 A9 A10 B2 B5 B6 B8 B10 B11 B12 B13 B14 B15 B16 B19 B22 C10 C13 At the beginning of each of the practices, the student should answer a set of 3 short questions related to the theoretical concepts corresponding to the session. 2
 
Assessment comments

   The evaluation of the contents taught in the lecture classes and problem solving of the subject represents 90% of the overall mark. The evaluation of the laboratory practices and through ICT, together with the short answer test, is the remaining 10%. To pass the subject will be required:

a) UP TO 6 POINTS OBTAINED IN THE MIXED TEST, WITH A MINIMUM OF 3 (IN THIS SECTION) TO PASS THE ASSIGNMENT, THE MAXIMUM DURATION OF EACH MIDTERM (SEE TEXT BELOW) WILL BE 2 HOURS. THE MAXIMUM DURATION OF THE FINAL EXAM WILL BE 3 HOURS.

The mixed test will consist of two exams of theory and problems related to the contents of Electricity and Electronics of the subject, given throughout the four-month period. The student will have two options: to pass the mixed test by midterms (a midterm one with problems related to the contents of the first four subjects, and another one with problems related to the remaining contents) or to take both exams in the final mixed test. In order to pass the subject, a minimum of 3 points out of 6 in each of the two relative exams that make up the mixed test will be required. The final grade will be computed as the average of the grades obtained in each of the partial exams. The maximum duration of each of the midterms will be 2 hours. The maximum duration of the final exam (that is, including both parts) will be 3 hours. The student who passes one of the two partial exams will only have to take the exam of the part not passed in the final exam (first opportunity). It will be possible to evaluate the participation of the student throughout the course in the lectures and problem-solving sessions.

B) UP TO 3 POINTS OBTAINED IN THE CONTINUOUS EVALUATION OF PROBLEM SOLVING, WITH A MINIMUM OF 1.5 (IN THIS SECTION) TO PASS THE COURSE. IF THE STUDENT DOES NOT PASS THE PROBLEM-SOLVING (SEE DETAILS BELOW), THE STUDENT MUST PASS AN ADDITIONAL FINAL PROBLEM-SOLVING EXAM (TO BE TAKEN AT THE SAME TIME AS THE FINAL EXAM, AND WITHOUT AN INCREASE IN THE TIME AVAILABLE TO COMPLETE THIS ADDITIONAL PART).

Attendance at problem solving classes is not mandatory. The continuous evaluation will consist in the resolution of problems grouped in tests (consisting of 2 problems to be solved and a reasoned question), which must be solved on previously stipulated dates. The maximum duration of each test will be 10 minutes. Those students who fail more than three of these tests, or who do not reach at least 1.5 points in the final grade of this section, will have to take a final (additional) problem test on the dates indicated by the center for the mixed test (final exam). This additional exam will consist of three problems whose difficulty will be maximum, although always within the level of the problems solved in group tutoring classes. In this case, the passing of the problem part will be obtained with a score of at least 1.5 out of 3.

C) UP TO 1 POINT OBTAINED IN THE CONTINUOUS EVALUATION OF LABORATORY AND ICT PRACTICES, TOGETHER WITH THE TUTORED WORK (WHOSE MAXIMUM SCORE IS 0.5), WITH A MINIMUM OF 0.5 POINTS TO PASS THE ASSIGNMENT. IF THE STUDENT DOES NOT PASS THE PRACTICES (SEE DETAILS BELOW), A FINAL THEORETICAL-PRACTICAL LABORATORY AND ICT EXAM (TO BE TAKEN AT THE END OF THE FINAL EXAM TIME, AND WHICH MAXIMUM DURATION IS 1 HOUR) MUST BE TAKEN.

In the evaluation of the work it will be required to have a minimum of 0.5 points out of 1 in the sum of the laboratory practices, practices through ICT and supervised work, delivered through laboratory guides accordingly completed by each student. Prior to each laboratory practice, students must complete a test (duration: 10 minutes) consisting of 3 simple questions, or simple calculations, related to the laboratory practice that will follow. They will have a maximum total score of 0.2 points, while the guides will complete the remaining 0.8 points. Students who do not pass the practical part of the subject through continuous assessment will have to take a final theoretical and practical exam on the dates indicated by the center for the mixed test. This exam will consist of questions related to the work done in class, along with questions related to the handling of equipment. In this case, the pass of the practical part will be obtained with a score of at least 0.25 over 0.5.

The evaluation criteria contemplated in Table A-II/1 of the STCW Code, and included in the Quality Assurance System, will be taken into account when designing and carrying out the evaluation.


Sources of information
Basic R. L. Boylestad y L. Nashelsky (2009). Electrónica: teoría de circuitos y dispositivos electrónicos. Ed. Prentice Hall (10ª Edición)
J.A.Edminister y Mahmood Nahvi (). Circuitos eléctricos. Ed. McGraw Hill (Serie Schaum).
J.A.Edminister (). Circuitos eléctricos . Ed. McGraw Hill (Serie Schaum).
Mª Elena Novo Vidal (2019). Copia de las diapositivas de la asignatura con problemas resueltos. Reprografía
Jacob Millman y Christos C. Halkias. (). Electrónica integrada: Circuitos y Sistemas Analógicos y Digitales. Editorial Hispano-Europea.- (6ª Edición).
R. L. Boylestad (). Introducción al análisis de circuitos. Ed. Prentice Hall
José Manuel Andión Fernández (2020). Prácticas de laboratorio y simulador. Moodle: https://moodle.udc.es/

Complementary Jacob Millman y Christos C. Halkias (). Dispositivos y circuitos electrónicos. Editorial Pirámide. 10ª Edición.
Linear Technology (2009). LTspice User Manual. Linear Technology
Varios Autores (2020). LTspice Users Group. https://groups.io/g/LTspice
Jacob Millman y Arvin Grabel. (). Microelectrónica. Editorial Hispano-Europea.(6ª edición).
Jacob Millman. (). Microelectrónica: Circuitos y Sistemas Analógicos y Digitales. Editorial Hispano-Europea. (3ª edición).
Keysight Technologies (2012). Osciloscopios de la serie 1000B de Keysight. Guía del usuario. Keysight Technologies
Albert Malvino y David J. Bates ( 2.010.). Principios de electrónica. Mac Graw Hill. (7ª Edición).
Siglent Technologies (2017). SDG800 Series Function/Arbitrary Waveform Generator. User Manual.. Siglent Technologies


Recommendations
Subjects that it is recommended to have taken before
Mathematics I/631G01101
Phisics/631G01103
Mathematics II/631G01106

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Ship's Energy and auxiliary systems/631G01204
Maritime Radiocommunications/631G01307
Navigation and communications systems/631G01311

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.