Datos Identificativos 2019/20
Asignatura (*) Técnología Energética Código 631G02406
Titulación
Grao en Tecnoloxías Mariñas
Descriptores Ciclo Periodo Curso Tipo Créditos
Grado 1º cuatrimestre
Cuarto Obligatoria 6
Idioma
Castellano
Gallego
Modalidad docente Presencial
Prerrequisitos
Departamento Ciencias da Navegación e Enxeñaría Mariña
Coordinador/a
Carbia Carril, Jose
Correo electrónico
jose.carbia@udc.es
Profesorado
Carbia Carril, Jose
Correo electrónico
jose.carbia@udc.es
Web
Descripción general

Competencias del título
Código Competencias del título
A1 CE1 - Capacidad para la realización de inspecciones, mediciones, valoraciones, tasaciones, peritaciones, estudios, informes, planos de labores y certificaciones en las instalaciones del ámbito de su especialidad.
A2 CE2 - Capacidad para la dirección, organización y operación de las actividades objeto de las instalaciones marítimas en el ámbito de su especialidad.
A3 CE3 - Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
A4 CE4 - Capacidad de analizar y valorar el impacto social y ambiental de las soluciones técnicas, así como la prevención de riesgos laborales en el ámbito de su especialidad.
A5 CE5 - Conocimientos en la organización de empresas. Capacidad de organización y planificación.
A6 CE6 - Conocimientos y capacidad para la realización de auditorías energéticas de instalaciones marítimas.
A7 CE7 - Capacidad para la operación y puesta en marcha de nuevas instalaciones o que tengan por objeto la construcción, reforma, reparación, conservación, instalación, montaje o explotación, realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, y otros trabajos análogos de instalaciones energéticas e industriales marinas, en sus respectivos casos, tanto con carácter principal como accesorio, siempre que quede comprendido por su naturaleza y característica en la técnica propia de la titulación, dentro del ámbito de su especialidad, es decir, operación y explotación.
A14 CE14 - Evaluación cualitativa y cuantitativa de datos y resultados, así como la representación e interpretación matemáticas de resultados obtenidos experimentalmente.
A15 CE15 - Manejar correctamente la información proveniente de la instrumentación y sintonizar controladores, en el ámbito de su especialidad.
A17 CE17 - Modelizar situaciones y resolver problemas con técnicas o herramientas físico-matemáticas.
A18 CE18 - Redacción e interpretación de documentación técnica.
A20 CE20 - Ser capaz de identificar, analizar y aplicar los conocimientos adquiridos en las distintas materias del Grado, a una situación determinada planteando la solución técnica más adecuada desde el punto de vista económico, medioambiental y de seguridad.
A21 CE37 - Capacidad para ejercer como Oficial de Máquinas de la Marina Mercante, una vez superados los requisitos exigidos por la Administración Marítima.
A24 CE40 - Capacidad para la gestión, dirección, control, organización y planificación de industrias o explotaciones relacionadas con la actividades de la ingeniería marina tanto en competencias referidas a la calidad, medio ambiente, seguridad marina y prevención de riesgos laborales como todas las actividades relacionadas con la puesta en el mercado de su producción.
A29 CE41 - Realizar operaciones de explotación óptima de las instalaciones del buque.
A30 CE42 - Operar, reparar, mantener, reformar, optimizar a nivel operacional las instalaciones industriales relacionadas con la ingeniería marina, como motores alternativos de combustión interna y subsistemas; turbinas de vapor, calderas y subsistemas asociados; ciclos combinados; propulsión eléctrica y propulsión con turbinas de gas; equipos eléctricos, electrónicos, y de regulación y control del buque; las instalaciones auxiliares del buque, tales como instalaciones frigoríficas, sistemas de gobierno, instalaciones de aire acondicionado, plantas potabilizadoras, separadores de sentinas, grupos electrógenos, etc.
A31 CE43 - Operar, reparar, mantener y optimizar las instalaciones auxiliares de los buques que transportan cargas especiales, tales como quimiqueros, LPG, LNG, petroleros, cementeros, Ro-Ro, Pasaje, botes rápidos, etc.
A32 CE44 - Conocer el balance energético general, que incluye el balance termo-eléctrico del buque, o sistema de mantenimiento da carga, así como la gestión eficiente de la energía respetando el medio ambiente.
A50 Capacidad para la óptima explotación de industrias relacionadas con la náutica y el transporte marítimo, tanto en competencias referidas a la calidad, medio ambiente, seguridad marina y prevención de riesgos laborales.
A53 Realizar operaciones de mantenimiento y explotación óptima de instalaciones marítimo - industriales.
A54 Operar, reparar, mantener y optimizar a nivel operacional las instalaciones industriales relacionadas con la ingeniería marina, como motores alternativos de combustión interna y subsistemas; turbinas de vapor y de gas, calderas y subsistemas asociados; ciclos combinados; equipos eléctricos, electrónicos, y de regulación y control; las instalaciones auxiliares, tales como instalaciones frigoríficas, instalaciones de aire acondicionado, plantas potabilizadoras, grupos electrógenos, etc.
A55 Conocer el balance energético general, incluyendo el balance termo-eléctrico, así como la gestión eficiente de la energía respetando el medio ambiente.
A58 Observar el cumplimiento de la legislación vigente en este ámbito.
B2 CT2 - Resolver problemas de forma efectiva.
B3 CT3 - Comunicarse de manera efectiva en un entorno de trabajo.
B4 CT4 - Trabajar de forma autónoma con iniciativa.
B5 CT5 - Trabajar de forma colaborativa.
B7 CT7 - Capacidad para interpretar, seleccionar y valorar conceptos adquiridos en otras disciplinas del ámbito marítimo, mediante fundamentos físico-matemáticos.
B8 CT8 - Versatilidad.
B9 CT9 - Capacidad para el aprendizaje de nuevos métodos y teorías, que le doten de una gran versatilidad para adaptarse a nuevas situaciones.
B10 CT10 - Comunicar por escrito y oralmente los conocimientos procedentes del lenguaje científico.
B11 CT11 - Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas.
C3 C3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida.
C4 C4 - Desarrollarse para el ejercicio de una ciudadanía abierta, culta, crítica, comprometida, democrática y solidaria, capaz de analizar la realidad, diagnosticar problemas, formular e implantar soluciones basadas en el conocimiento y orientadas al bien común.
C5 C5 - Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras.
C6 C6 - Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.
C7 C7 - Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida.
C8 C8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad.
C9 CB1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
C10 CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
C11 CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
C12 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
C13 CB5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Resultados de aprendizaje
Resultados de aprendizaje Competencias del título
coñecer e analizar os procesos termodinámicos que teñen lugar nas máquinas térmicas. A1
A3
A15
A17
A55
B4
B5
B7
B9
B10
B11
C3
C4
C5
C6
C7
C8
Realizar balances enerxéticos de instalacións térmicas. Tomar decisións dende o punto de vista da optimización enerxética. A1
A2
A3
A4
A6
A7
A14
A17
A18
A20
A21
A24
A29
A30
A31
A32
A54
A55
B4
B5
B8
B10
B11
C3
C5
C6
C8
Calcular os compoñentes que interveñen nas instalacións térmicas. A6
A7
A14
A17
A18
A20
A31
A32
A54
A55
B2
B3
B4
B5
B7
B8
B9
B11
C3
C6
C7
C8
Planificación e organización enerxética de instalacións térmicas A1
A2
A3
A5
A6
A14
A17
A18
A32
A50
A53
A55
A58
C9
C10
C11
C12
C13

Contenidos
Tema Subtema
1. ANÁLISE ENERXÉTICO I EXERGÉTICO DE INSTALACIÓNS TÉRMICAS 1.1. Introducción.
1.2. Desenrolo do balance de enerxía.
1.3. Fundamentos do concepto de exerxía.
1.4. Balances de enerxía i exergía en estado estacionario.
1.5. Aplicación da análise enerxético y exerxético a toberas, difusores, turbinas, compresores, bombas, intercambiadores de calor e dispositivos de estrangulación.
1.6. Análise das condicións transitorias.
2. PROCESOS DE TRANSFERENCIA DE MATERIA 2.1 Introducción.
2.2 Fundamentos da transferencia de materia.
2.3 Transferencia molecular de masa.
2.4 Principios da difusión.
2.5 Difusión estacionaria nun non difundente.
2.6 Difusión nas mesturas de varios compoñentes.
2.7 Transferencia de masa por convección.
3. ESTUDO DOS PROCESOS DE COMBUSTIÓN 3.1. Introducción.
3.2. O proceso de combustión.
3.3. Exergía química.
3.4. Composición e punto de rocío dos gases producidos na combustión.
3.5. Diagnose da combustión. Temperatura adiabática da lapa.
3.6. Intercambiabilidade de combustibles.
3.7. Conservación da enerxía en sistemas reactivos.
4. PROCESOS CON TRANSFERENCIA DE CALOR 4.1. Introducción.
4.2. Balance de enerxía nuha superficie.
4.3. Aplicación das leis de conservación.
4.4. Intercambiadores de calor.
4.5. Análise de problemas de transferencia de calor. Metodoloxía.
4.6. Transferencia simultánea de calor e masa.
5. ÍNDICES DE ESTUDO TÉCNICO-ECONÓMICO EN INSTALACIÓNS TÉRMICAS 5.1. Introducción.
5.2. Instalacións e consumidores de enerxía.
5.3. Condicións de consumo enerxético.
5.4. Clasificación das instalaciones.
5.5. Condicións técnicas i económicas das instalacións.
6. BALANCES ENERXÉTICOS NAS INSTALACIÓNS TÉRMICAS 6.1. Introducción.
6.2. Balances en instalacións con motor de combustión interna.
6.3. Balances en instalacións con turbinas de gas.
6.4. Balances en una instalacións de vapor.
6.5. Balances en instalacións con ciclos combinados gas-vapor.
6.6. Balances en instalacións de refrixeración e climatización.
6.7. Análise exerxético das instalaciones.
7. BALANCES ENERXÉTICOS NAS INSTALACIÓNS DE COXENERACIÓN 7.1. Introducción.
7.2. Instalacións de coxeneración.
7.3. Marco lexislativo aplicabel a coxeneración e a sua evolución.
7.4. Aforro teórico de enerxía primaria na coxeneración.
7.5. Sistemas de coxeneración e economía enerxética.
7.6. Relación entre as enerxías térmica i eléctrica.
7.7. Interés económico e viabilidade dos sistemas de coxeneración.
8. PRODUCCIÓN E ACONDICIONAMENTO QUÍMICO DA AUGA UTILIZADA NAS INSTALACIÓNS TÉRMICAS 8.1. Introducción.
8.2. Parámetros que afectan ó comportamiento da auga.
8.3. Pretratamento da auga.
8.4. Desmineralización da auga.
8.5. Fontes de contaminación e transporte de impurezas.
8.6. Calidade do vapor, auga de alimentación e condensado.
8.7. Tipos de acondicionamento do ciclo auga-vapor.
8.8. Desgasificación mecánica.
8.9. Control analítico do ciclo.
9. ENERXÍAS ALTERNATIVAS 9.1. Introducción.
9.2. Pilas de combustible.
9.3. Biomasa.
9.4. Eólica.
9.5. Hidráulica.
9.6. Xeotérmica.
9.7. Oceánica.
9.8. Solar.
9.9. Nuclear.
10. AUDITORÍAS ENERXÉTICAS 10.1. Introducción.
10.2. Complementos a auditoría enerxética.
10.3. Medios materiais para a auditoría enerxética.
10.4. Formularios.
10.5. A recopilación de datos.
10.6. Cálculos.
10.7. Solucións especiais.
11. PLANIFICACIÓN ENERXÉTICA DE INSTALACIÓNS TÉRMICAS 11.1. Introducción.
11.2. Utilización da enerxía.
11.3. Evaluación das pérdidas de materia y enerxía.
11.4. Distribución de fluidos nos consumidores térmicos.
11.5. Aumento do rendemento con inversión económica.
11.6. Mantemento das condicións óptimas de funcionaiento dos equipos enerxéticos.
11.7. Inspección e revisión de equipos.

Planificación
Metodologías / pruebas Competéncias Horas presenciales Horas no presenciales / trabajo autónomo Horas totales
Sesión magistral A1 A2 A4 A5 A6 A7 A17 A20 A21 A24 A30 A31 A32 A50 A54 A55 A58 B7 B9 C3 C4 C5 C8 14 21 35
Estudio de casos A1 A2 A3 A4 A5 A6 A7 A14 A15 A17 A18 A20 A21 A24 A29 A30 A31 A32 A50 A53 A54 A55 A58 B2 B3 B4 B5 B7 B8 B10 B11 C3 C6 C7 C8 14 28 42
Trabajos tutelados A1 A2 A3 A4 A5 A6 A7 A14 A17 A18 A20 A24 A29 A30 A31 A32 A50 A53 A54 A55 A58 B2 B3 B4 B5 B7 B8 B9 B10 B11 C3 C4 C5 C6 C8 14 42 56
Prueba objetiva A1 A2 A3 A4 A5 A6 A7 A14 A15 A17 A18 A20 A21 A24 A29 A30 A31 A32 A50 A53 A54 A55 A58 B2 B3 B4 B5 B7 B8 B9 B10 B11 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 3 0 3
 
Atención personalizada 14 0 14
 
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

Metodologías
Metodologías Descripción
Sesión magistral Farase a explicación detallada dos contidos da materia que se distribuen en temas, o alumno contará con material bibliográfico do tema a tratar en cada sesión maxistral. Fomentarase a participación do alumno na clase, a través de comentarios que traten de relacionar os contenidos teóricos coa experiencia real.
Estudio de casos Proposta de casos prácticos, resolución y crítica.
Trabajos tutelados Proporase a realización de traballos para a resolución de casos de procesos reales, realizando o conseguinte seguimento.
Prueba objetiva Faranse probas escritas que constarán de cuestións teóricas e prácticas.

Atención personalizada
Metodologías
Trabajos tutelados
Prueba objetiva
Estudio de casos
Sesión magistral
Descripción
SESIÓN MAXISTRAL: Atención personalizada na aula as dudas plantexadas.

TRABALLOS TUTELADOS: Atención en despacho ou aula para a resolución de traballos de análise.
Resolución das dificultades na realización do traballo.

PROBA OBXETIVA: Supervisión da sua realización.

ATENCIÓN PERSONALIZADA: Farase en horarios de tutorias establecido a comenzo do curso i exposto no tabuleiro de anuncios do despacho.

Evaluación
Metodologías Competéncias Descripción Calificación
Trabajos tutelados A1 A2 A3 A4 A5 A6 A7 A14 A17 A18 A20 A24 A29 A30 A31 A32 A50 A53 A54 A55 A58 B2 B3 B4 B5 B7 B8 B9 B10 B11 C3 C4 C5 C6 C8 Presentación en tempo e forma dos traballos propostos 30
Prueba objetiva A1 A2 A3 A4 A5 A6 A7 A14 A15 A17 A18 A20 A21 A24 A29 A30 A31 A32 A50 A53 A54 A55 A58 B2 B3 B4 B5 B7 B8 B9 B10 B11 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Realización de proba individual 50
Estudio de casos A1 A2 A3 A4 A5 A6 A7 A14 A15 A17 A18 A20 A21 A24 A29 A30 A31 A32 A50 A53 A54 A55 A58 B2 B3 B4 B5 B7 B8 B10 B11 C3 C6 C7 C8 Realización e discusión dos casos propostos 15
Sesión magistral A1 A2 A4 A5 A6 A7 A17 A20 A21 A24 A30 A31 A32 A50 A54 A55 A58 B7 B9 C3 C4 C5 C8 Coa asistencia participativa as clases expositivas 5
 
Observaciones evaluación

Fuentes de información
Básica J. Carbia; J.A. Orosa (2010). Apuntes da materia.
Santiago Sabulal García (2006). Centrales térmicas de ciclo combinado . España. Ed. Díaz de Santos
Haywood (2000). Ciclos termodinámicos de potencia y refrigeración . Méjico. Limusa
José Mª. Sala Lizarraga (1999). Cogeneración . Bilbao. Servicio Editorial UNIVERSIDAD DEL PAIS VASCO
F. J. Barclay (1995). Combinned Power and Process-an Exergy Approach .
José Mª. De Juana (2003). Energías Renovables para el desarrollo . Méjico. Thomson-Paraninfo. S.A
M. J. M., and H. N. S (1995). Fundamentals of Enginnering Thermodynamics . Wiley
M.J. Morán; H.N. Shapiro (2003). Fundamentos de Termodinámica Técnica . Barcelona. Edit. Reverté
J. R. Welty (1999). Fundamentos de Tranferencia de Momento, Calor y Masa . Méjico. Limusa
Frank P. Incropera (1999). Fundamentos de transferencia de calor. Méjico. Prentice Hall
Marta Muñoz Domínguez; Antonio José Rovira de Antonio (2006). Ingeniería Térmica . Madrid. UNED
Juan A. López Sastre (2004). La pila de combustible . Valladolid. Secretariado de Publicaciones e Intercambio. Universidad de Valladolid
Robert E. Treybal (1988). Operaciones de transferencia de masa . Méjico. Macgraw-Hill
Çengel-Boles (2003). Termodinámica. Méjico. McGraw-Hill
Orosa García, José A (2008). Termodinámica aplicada con EES . España. Tórculo Edicións
J.L. Gómez Ribelles (2002). Termodinámica Técnica . Valencia. Edit. de la UPV
P. Hambling (1991). Turbines, Generators and Associated Plant . Pergamon Press
Claudio Mataix (2000). Turbomáquinas Térmicas . Madrid. Editirial DOSSAT, S.A

Complementária S. Kabac (1995). Boilers, Evaporators and Condensers . J. Wiley & Sons
Ernest J. Henley (2002). Cálculo de Balances de Materia y Energía . Barcelona. Edit. Reverté. S.A.
Manuel Marquez (2005). Combustión y Quemadores . España. Marcombo
Antonio Creus Solé (2004). Energías Renovables. Barcelona. Edic. Ceysa
Mario Ortega Rodrígez (1999). Energías Renovables . Madrid. Thomson-Paraninfo
H. A. Sorensen (1983). Energy Conversion Systems . Wiley
Román Monasterio Larrinaga (1993). La Bomba de Calor. Fundamentos, Técnicas y Aplicaciones. Madrid. McGraw-Hill
K. W. Li (1985). Power Plant System Desing . Wiley
Kreit/Bohn (2002). Principios de Transferencia de Calor . Madrid. Thomson
M. Meckler (1994). Retrofitting Buildings for Energy Conservation . The Fairmont Press
Merle C. Potter y Craig W. Somerton (2004). Termodinámica para Ingenieros . Madrid. McGraw-Hill
A. Bejan (1998). Thermodinamics Optimization of Complex Energy Systems . NATO Sciences


Recomendaciones
Asignaturas que se recomienda haber cursado previamente
Termodinámica y Termotecnia/631G02254
Mecánica de Fluidos/631G02258
Motores de Combustión Interna/631G02351
Turbinas de Vapor y Gas/631G02352
Transferencia de Calor y Generadores Vapor/631G02353
Técnicas de Frío y Aire acondicionado/631G02355

Asignaturas que se recomienda cursar simultáneamente
Oficina Técnica-Proyectos/631G02452
/
/

Asignaturas que continúan el temario
Termodinámica y Termotecnia/631G02254
Mecánica de Fluidos/631G02258
Motores de Combustión Interna/631G02351
Turbinas de Vapor y Gas/631G02352
Técnicas de Frío y Aire acondicionado/631G02355
Máquinas Térmicas Mariñas/631G02361

Otros comentarios


(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías