Identifying Data 2022/23
Subject (*) Fluid Mechanics Code 631G03017
Study programme
Grao en Máquinas Navais
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Second Obligatory 6
Language
Spanish
Galician
Teaching method Face-to-face
Prerequisites
Department Ciencias da Navegación e Enxeñaría Mariña
Coordinador
Baaliña Insua, Alvaro
E-mail
alvaro.baalina@udc.es
Lecturers
Arias Fernández, Ignacio
Baaliña Insua, Alvaro
E-mail
ignacio.arias@udc.es
alvaro.baalina@udc.es
Web http://estudos.udc.es/es/subject/631G03V01/631G03017/2022
General description Os obxetivos da Mecánica de Fluidos céntranse no estudo dos fluidos en reposo ou en movemento así como nos correspondentes efectos nos contornos. O coñecemento dos principios básicos do comportamento dun fluido resulta esencial á hora de analizar e deseñar todo sistema que conta cun fluido operativo como sistemas de tuberías e máquinas hidráulicas. Especial atención merece o estudo da resistencia ao avance do buque e da teoría e comportamento da hélice.
O alumno debe ter coñecementos de Termodiánimica e Mecánica ademais dunha sólida base física e matemática.

Study programme competencies
Code Study programme competences
A2 CE02 - Facer funcionar a maquinaria principal e auxiliar e os sistemas de control correspondentes.
A3 CE03 - Facer funcionar os sistemas de bombeo de combustible, lubricación, lastre e doutro tipo e os sistemas de control correspondentes.
A6 CE06 - Mantemento e reparación das máquinas e o equipo de a bordo.
A7 CE07 - Manter a navegabilidade do buque.
A9 CE09 - Emprego do inglés escrito e falado.
A73 CE73 - Modelizar situacións e resolver problemas con técnicas ou ferramentas físico-matemáticas.
A74 CE74 - Avaliar de forma cualitativa e cuantitativa os datos e resultados, así como a representación e interpretación matemáticas de resultados obtidos experimentalmente.
A79 CE79 - Adquirir coñecementos de mecánica de fluídos e a súa aplicación á resolución de problemas no campo da enxeñería.
A86 CE86 - Operar, reparar, manter e optimizar as instalacións auxiliares dos buques que transportan cargas especiais, tales como quimiqueros, LPG, LNG, petroleiros, cementeros, Ro- Ro, Pasaxe, botes rápidos, etc.
A89 CE89 - Poñer en marcha e operar novas instalacións en buques, instalacións marítimas e industriais.
A90 CE90 - Operar, reparar, manter e optimizar a nivel operacional as instalacións industriais relacionadas coa enxeñería mariña, como motores alternativos de combustión interna e subsistemas; turbinas de vapor e de gas, caldeiras e subsistemas asociados; ciclos combinados; equipos eléctricos, electrónicos, e de regulación e control; as instalacións auxiliares, tales como instalacións frigoríficas, instalacións de aire acondicionado, plantas potabilizadoras, grupos electrógenos, etc.
A94 CE94 - Realizar inspeccións, medicións, valoracións, taxacións, peritacións, estudos, informes, planos de labores e certificacións nas instalacións do ámbito da súa especialidade.
A96 CE96 - Realización de auditorías enerxéticas de instalacións marítimas.
A99 CE99 - Ter a capacidade para exercer como Oficial de Máquinas da Mariña Mercante, unha vez superados os requisitos esixidos pola Administración Marítima.
A100 CE100 - Ter a capacidade para exercer como oficial ETO da Mariña Mercante, unha vez superados os requisitos esixidos pola Administración Marítima.
B2 CB2 - Aplicar os coñecementos no seu traballo ou vocación dunha forma profesional e posuír competencias demostrables por medio da elaboración e defensa de argumentos e resolución de problemas dentro da área dos seus estudos
B3 CB3 - Ter a capacidade de reunir e interpretar datos relevantes para emitir xuicios que inclúan unha reflexión sobre temas relevantes de índole social, científica ou ética
B5 CB5 - Ter desenvolvido aquelas habilidades de aprendizaxe necesarias para emprender estudos posteriores con un alto grao de autonomía.
B7 CG02 - Resolver problemas de forma efectiva.
B12 CG07 - Capacidade para interpretar, seleccionar e valorar conceptos adquiridos noutras disciplinas do ámbito mariño, mediante fundamentos físico-matemáticos.
B13 CG08 - Capacidade para a aprendizaxe de novos métodos e teorías, que lle doten dunha gran versatilidade para adaptarse a novas situacións.
B15 CG10 - Capacidade para resolver problemas con iniciativa, toma de decisións, creatividade, razoamento crítico e de comunicar e transmitir coñecementos habilidades e destrezas.
B16 CG11 - Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C3 CT03 - Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C7 CT07 - Desenvolver a capacidade de traballar en equipos interdisciplinares ou transdisciplinares, para ofrecer propostas que contribúan a un desenvolvemento sostible ambiental, económico, político e social.

Learning aims
Learning outcomes Study programme competences
Recognize the basic properties of fluids. Static and dynamic analysis. Pressure and velocity fields. Ability to determine energy losses in fluid systems. Ability to solve fluid problems applying precise hypotheses and appropriate physical models. Planning and decision making when managing an industrial fluid handling facility. Ability to understand the processes that occur in hydraulic machinery. A2
A3
A6
A7
A9
A73
A74
A79
A86
A89
A90
A94
A96
A99
A100
B2
B3
B5
B7
B12
B13
B15
B16
C3
C7
Ability to reason and understand energy interactions in various fluid systems Ability to solve problems and perform maintenance and optimization actions for fluid systems. Planning and making decisions regarding fluid management in industrial facilities. Critical Thinking About Applicable Physical Models Study habit and structuring of information through tables and diagrams. The following competencies are included in Table A-III / 1 of the STCW Code as amended by Manila; Function: Naval machinery, at the operational level -1.1 Carry out a safe machinery watch -1.2 Operate the main and auxiliary machinery and the corresponding control systems. A2
A3
A6
A7
A9
A73
A74
A79
A86
A89
A90
A94
A96
A99
A100
B2
B3
B5
B7
B12
B13
B15
B16
C3
C7

Contents
Topic Sub-topic
PART I.- BASIC CONCEPTS AND KINEMATICS. LESSON 1.- PRESENTATION. 1.1.- DEFINITIONS AND MAGNITUDES
1.2.- FORCES FIELD IN FLUIDS. MOTION EQUATION
1.3.- VELOCITY FIELD.
1.4.- DIFFERENTIATION AND INTEGRATION IN THE FLUID FIELD
PART II.- STATICS. LESSON 2.- FLUID STATICS. 2.1.- FLUID STATICS
2.2.- FLUID DYNAMICS
2.3.- PRESSURE DISTRIBUTION IN SOLID RIGID MOTION
PART III.- DYNAMICS. LESSON 3.- INTEGRAL ANALYSIS OF CONTROL VOLUMES. 3.1.- CONSERVATION LAWS IN A CONTROL VOLUME.
3.2.- CONTINUITY EQUATION.
3.3.- CONSERVATION OF MOMENTUM.
3.4.- CONSERVATION OF ANGULAR MOMENTUM.
3.5.- CONSERVATION OF ENERGY. BERNOULLI EQUATION.
LESSON 4.- DIFFERENTIAL ANALYSIS OF CONTROL VOLUMES. 4.1.- WAYS TO OBTAIN THE GENERAL DIFFERENTIAL EQUATIONS.
4.2.- DIFFERENTIAL EQUATION OF CONTINUITY.
4.3.- DIFFERENTIAL EQUATION OF MOMENTUM.
4.4.- DIFFERENTIAL EQUATION OF ENERGY.
LESSON 5.- DIMENSIONAL ANALYSIS. SIMILITUDE. 5.1.- INTRODUCTION. BUCKINGHAM PI THEOREM.
5.2.- SIGNIFICANT DIMENSIONLESS GROUPS. SIMILARITY LAWS.
LESSON 6.- INTERNAL INCOMPRESSIBLE VISCOUS FLOW 6.1.- INTERNAL LAMINAR FLOW.
6.2.- FULLY DEVELOPED LAMINAR FLOW.
6.3.- FULLY DEVELOPED TURBULENT FLOW.
6.4.- FLOW IN PIPES AND DUCTS.
PART IV.- FLUID MACHINERY. LESSON 7.- TURBOMACHINERY. 7.1.- CLASSIFICATION OF FLUID MACHINERY.
7.2.- EULER EQUATION OF TURBOMACHINERY.
7.3.- PUMPS. PERFORMANCE CHARACTERISTICS.
7.4.- DIMENSIONLESS GROUPS OF PUMPS.
7.5.- CAVITATION AND NPSH.
7.6.- APPLICATION TO FLUID SYSTEMS.
LESSON 8. SHIP RESISTANCE AND PROPULSION 8.1.- DIMENSIONAL ANALYSIS.
8.2.- TYPES OF RESISTANCE.
8.3.- TYPES OF PROPELLERS. GEOMETRIC FEATURES.
8.4.- PROPELLER PERFORMANCE. COEFICIENTES AND EFFICIENCIES.
8.5.- PROPELLER AND PROPULSIVE SYSTEM SELECTION.
STCW
The development and overcoming of these contents, together with those corresponding to other subjects that include the acquisition of specific competencies of the degree, guarantees the knowledge, comprehension and sufficiency of the competencies contained in Table AIII / 2, of the STCW Convention, related to the level of management of First Engineer Officer of the Merchant Navy, on ships without power limitation of the main propulsion machinery and Chief Engineer officer of the Merchant Navy up to a maximum of 3000 kW.
Table A-III / 2 of the STCW Convention.
Specification of the minimum standard of competence for Chief Engineer Officers and First Engineer Officers on ships powered by main propulsion machinery of 3000 kW or more.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A2 A3 A6 A7 A9 A73 A74 A79 A86 A89 A90 A94 A96 A99 A100 B2 B3 B5 B12 B13 B16 C3 30 56 86
Problem solving A73 B7 B15 19 25 44
Supervised projects A2 A3 A6 A7 A9 A73 A79 A86 A89 A90 A94 A96 A99 A100 B2 B3 B5 B7 B12 B13 B15 B16 C3 C7 0 15 15
Objective test A2 A3 A6 A7 A9 A73 A74 A79 A86 A89 A90 A94 A96 A99 A100 B2 B3 B5 B7 B12 B13 B15 B16 C3 C7 3 0 3
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech There will be a detailed explanation of the contents of the subject distributed in topics. The student will have at all times a typed copy of the topic to be discussed in each lesson speech. Class participation is encouraged through comments that relate the theoretical content to real life experiences.
Problem solving The collections of exercises proposed for each topic will be solved, allowing the application of the most appropriate mathematical models to each case, including handling of tables, application of the most appropriate hypotheses, relationship with the theoretical content developed in the lectures and with the professional exercise. Real equipment related to the subject will be displayed both in the classroom and in the workshop.
Supervised projects Solution of problems not completed in-class sessions, with generic instructions from the teacher for their resolution and/ or presentation of topics or problems of calculation and design of special relevance.
Objective test 3 partial written tests will be carried out, with the possibility of recovering material from the previous test. It will consist of a theoretical part and a practical part, in such a way that both count for 50% of the grade. The ordinary and extraordinary exams will be governed by the same format.

Personalized attention
Methodologies
Guest lecture / keynote speech
Problem solving
Supervised projects
Description
The student will be helped in those questions related to the subject taught that are particularly difficult for their understanding. Corresponding exam reviews are also included. The information and contact channels will be the Virtual Faculty, individualized tutorials that take place for six hours throughout the week and videoconference sessions.

Assessment
Methodologies Competencies Description Qualification
Guest lecture / keynote speech A2 A3 A6 A7 A9 A73 A74 A79 A86 A89 A90 A94 A96 A99 A100 B2 B3 B5 B12 B13 B16 C3 Attendance at the sessions will count to a maximum of 10 % as part of the final grade providing that such attendance is not less than 90 % of the whole lessons. The student must sign a sheet of attendance to every lecture as evidence for the assessment of this methodology. 10
Objective test A2 A3 A6 A7 A9 A73 A74 A79 A86 A89 A90 A94 A96 A99 A100 B2 B3 B5 B7 B12 B13 B15 B16 C3 C7 The student will demonstrate proficiency in the theoretical and practical learning of the issues. 70
Supervised projects A2 A3 A6 A7 A9 A73 A79 A86 A89 A90 A94 A96 A99 A100 B2 B3 B5 B7 B12 B13 B15 B16 C3 C7 Presentation and defence of the work. It will be valued structure, neatness, originality and expository method. This is an optional methodology. For students who don't do the project, the qualification percentage of this methodology will be added to the objective test. 20
 
Assessment comments
<p>The official tests of the first opportunity, will include the different evaluation methodologies and must be completed by those students who have not passed the continuous evaluation as a whole. This test will be designed in such a way that the student can examine the objective test, where they have not reached at least 30% of the total grade.</p><p>Students obliged to attend the official "second chance" tests will keep the grade achieved in all methodologies, with the exception of the one obtained in the objective tests of the 1st opportunity, which will be replaced by that of the 2nd. In the same way, the students will only be eligible for honors if the maximum number of these for the corresponding course is not covered in its entirety at the "first opportunity".</p><p>For students with recognition of part-time dedication and academic exemption from attendance, the grade obtained in the activities associated with the personalized tutoring system will correspond to the evaluation of the problem-solving methodology and objective tests, with a weighting of 30 and 70%, respectively.</p><p>Fraudulent performance of the tests or evaluation activities, once verified, will directly imply a failing grade "0" in the subject and in the corresponding call, besides invalidating any grade obtained in either evaluation activity for the extraordinary call.</p><p>The evaluation system meets the competency evaluation criteria set out in Column 4 of the following Tables of the STCW Convention, modified by Manila 2010:</p><p>1.- Table A-III / 1 of Specification of the minimum standards of competence applicable to officers in charge of the watch in a permanently manned engine-room and those appointed to serve in an unmanned engine-room.</p><p>Function: Naval machinery, at the operational levelCompetencies:</p><p>-1.1 Carry out a safe machinery watch</p><p>-1.2 Operate the main and auxiliary machinery and the corresponding control systems.</p><p>&nbsp;</p><div><br /></div>

Sources of information
Basic (). .
Streeter, V. L. et al. (1998) (1998). Fluid Mechanics. McGraw-Hill, USA

Streeter, V. L. et al. (1998). Fluid Mechanics. McGraw-Hill, USA

Kundu, P. K. y Cohen, I. M. (2002). Fluid Mechanics. Academic Press, New York

White, F. M. (1995). Mecánica de Fluidos. McGraw-Hill, Madrid

Robert L. Mott (6ª Edición). Mecánica de Fluidos. Prentice Hall.

Agüera, J. S. (1996). Mecánica de Fluidos Incompresibles y Turbomáquinas Hidráulicas. Ciencia, Madrid

Complementary

Munson, B. R. et al. (1999). Fundamentos de Mecánica de Fluidos. Limusa-Wiley, México

Fox, R. W. y McDonald, A. T. (1998). Introduction to Fluid Mechanics . Wiley, USA


Recommendations
Subjects that it is recommended to have taken before
Mathematics I/631G03001
Mathematics II/631G03006
Physics I/631G03003
Physics II/631G03008

Subjects that are recommended to be taken simultaneously
Ship Systems Operation with Simulator/631G03043
Ship Energy Efficiency/631G03040

Subjects that continue the syllabus
Ship Propulsion and Resistance/631G03045
Hydraulic and Neumatic Systems/631G03025
Auxiliary Equipment for Ships/631G03023

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.