Datos Identificativos 2023/24
Asignatura (*) Álxebra Código 632G01001
Titulación
Grao en Enxeñaría de Obras Públicas
Descriptores Ciclo Período Curso Tipo Créditos
Grao Anual
Primeiro Formación básica 9
Idioma
Castelán
Modalidade docente Presencial
Prerrequisitos
Departamento Matemáticas
Coordinación
Taboada Vazquez, Raquel
Correo electrónico
raquel.taboada@udc.es
Profesorado
Dominguez Perez, Xabier E.
Taboada Vazquez, Raquel
Correo electrónico
xabier.dominguez@udc.es
raquel.taboada@udc.es
Web http://campusvirtual.udc.gal/
Descrición xeral Na materia de Álxebra deséxase que os estudantes adquiran unha serie de coñecementos matemáticos que lles permitan obter unha base sólida sobre a que construír os coñecementos de moitas outras materias. Estúdanse os espazos vectoriais de dimensión finita e as súas aplicacións xeométricas.

Competencias do título
Código Competencias do título
A1 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.
A2 Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería.
B1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 Aprender a aprender.
B7 Resolver problemas de forma efectiva.
B8 Aplicar un pensamiento crítico, lógico y creativo.
B9 Trabajar de forma autónoma con iniciativa.
B12 Comunicarse de manera efectiva en un entorno de trabajo.
B15 Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de la vida.
B18 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con que deben enfrentarse.
B20 Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad.
C3 Aprovechamiento e incorporación de las nuevas tecnologías
C7 Apreciación de la diversidad.
C8 Facilidad para la integración en equipos multidisciplinares.
C10 Capacidad de análisis, síntesis y estructuración de la información y las ideas.
C11 Claridad en la formulación de hipótesis.
C12 Capacidad de abstracción.
C13 Capacidad de trabajo personal, organizado y planificado.
C15 Capacidad de enfrentarse a situaciones nuevas.
C16 Habilidades comunicativas y claridad de exposición oral y escrita.
C18 Capacidad para aplicar conocimientos básicos en el aprendizaje de conocimientos tecnológicos y en su puesta en práctica

Resultados de aprendizaxe
Resultados de aprendizaxe Competencias do título
Coñecer, entender e saber aplicar a teoría elemental de álxebra lineal necesaria na enxeñaría de obras públicas e, en particular, para outras materias. A1
B1
B2
B5
B6
B18
Resolver e formular problemas de álxebra lineal. A1
B3
B7
B8
B9
C10
C11
C12
C13
C15
Manexar a ferramenta MATLAB e coñecer as súas aplicacións para resolver problemas de álxebra lineal A1
A2
B7
B8
B15
C3
C18
Ser capaz de manexar e comprender a notación matemática básica. Expresarse con rigurosidade A1
B4
B12
C8
C11
C12
C16
Utilizar as técnicas básicas de razoamento lóxico-matemático A1
B8
C10
C11
C12
Desenvolver a capacidade de análise e o pensamento crítico. A1
B8
B20
C7
C10

Contidos
Temas Subtemas
I. Preliminares I.1 Conxuntos
I.2 Conxuntos numéricos
I.3 Aplicacións
II. Matrices e determinantes II.1 Primeiras definicións
II.2 Operacións con matrices
II.3 Operacións elementais de fila e columna. Formas escalonadas
II.4 Sistemas de ecuacións lineais
II.5 Inversa dunha matriz: propiedades e cálculo
II.6 Rango dunha matriz
II.7 Definición de determinante
II.8 Desenvolvemento por adxuntos
II.9 Cálculo efectivo dun determinante.
II.10 Determinantes de productos, matrices inversas, matrices traspostas.
III. Espazos Rn III.1 Espazos Rn: definición e operacións.
III.2 Combinacións lineais.
III.3 Subespazos.
III.4 Independencia lineal e rango.
III.5 Concepto de base. Bases canónicas.
III.6 Aplicacións lineais de Rn en Rm.
III.7 Núcleo e imaxe dunha aplicación lineal.
III.8 Composición de aplicacións lineais
IV. Espazos vectoriais IV.1 Espazos vectoriais: definición.
IV.2 Subespazos vectoriais
IV.3 Bases e dimensión dun espazo vectorial. Propiedades
IV.4 Coordenadas. Cambios de base
IV.5 Aplicacións lineais entre espazos vectoriais. Representación matricial.
IV.6 Isomorfismos.
IV.7 Endomorfismos.
V. Autovalores e autovectores V.1 Autovalores e autovectores: definición, cálculo, propiedades.
V.2 Multiplicidades alxebraica e xeométrica dun autovalor.
V.3 Endomorfismos diagonalizables.
V.4 Potencia n-sima dunha matriz diagonalizable por semellanza.
VI. Formas bilineais e cuadráticas VI.1 Formas bilineais, formas bilineais simétricas e formas cuadráticas.
VI.2 Diagonalización dunha forma bilineal simétrica.
VI.3 Producto escalar e definicións relacionadas.
VI.4 Ortogonalidade.
VI.5 Diagonalización ortogonal de matrices simétricas.
VII. Xeometría afín e euclídea VII.1 Definición de plano e espazo afín.
VII.2 Sistemas de referencia. Coordenadas dun punto.
VII.3 Cambio de sistema de referencia.
VII.4 Definición de transformación afín.
VII.5 Ecuacións dunha transformación afín.
VII.6 Transformacións afins no plano e no espazo tridimensional.
VIII. Cónicas VIII.1 Definición de cónica.
VIII.2 Ecuacións dunha cónica en distintos sistemas de referencia.
VIII.3 Ecuación reducida dunha cónica.
VIII.4 Clasificación de cónicas
VIII.5 Estudo particualr de cónicas.
VIII.6 Cuádricas en forma normal
IX. Introducción a MATLAB/Octave. IX.1 Comandos básicos de MATLAB/Octave.
IX.2 Operacións con matrices.
IX.3 Gráficas en MATLAB/Octave.
IX.4 Programación: os scripts e as functions.

Planificación
Metodoloxías / probas Competencias Horas presenciais Horas non presenciais / traballo autónomo Horas totais
Proba de resposta breve A1 B5 B8 C10 C12 2 8 10
Actividades iniciais B1 B8 C10 C15 1 0 1
Proba obxectiva A1 B3 B6 B8 B7 C10 C11 C12 C16 4 16 20
Sesión maxistral A1 B12 B20 C3 C7 C10 C12 C16 40 40 80
Prácticas a través de TIC A1 A2 B15 C3 C18 C8 8 4 12
Proba de resposta múltiple A1 B8 C10 C12 3 12 15
Solución de problemas A1 B2 B4 B9 B8 B18 B7 C10 C11 C12 C13 C15 C16 43 43 86
 
Atención personalizada 1 0 1
 
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado

Metodoloxías
Metodoloxías Descrición
Proba de resposta breve Proba obxectiva dirixida a recordar conceptos básicos da materia de forma concisa.
Actividades iniciais Actividades que se levan a cabo antes a fin de coñecer as competencias que posúe o alumnado para o logro dos obxectivos que se queren alcanzar, vinculados a un programa formativo. Con ela preténdese obter información relevante que permita articular a docencia para favorecer aprendizaxes eficaces e significativas, que partan dos saberes previos do alumnado
Proba obxectiva Proba escrita utilizada para a avaliación da aprendizaxe, cuxo trazo distintivo é a posibilidade de determinar se as respostas dadas son ou non correctas. Permite avaliar coñecementos, capacidades, destrezas, rendemento, etc.
Sesión maxistral Exposición oral complementada co uso de medios audiovisuais e a introdución de algunhas preguntas dirixidas aos estudantes, coa finalidade de transmitir coñecementos e facilitar a aprendizaxe.
Prácticas a través de TIC Metodoloxía que permite ao alumnado aprender de forma efectiva, a través de actividades de carácter práctico a teoría de Álxebra mediante MATLAB.
Proba de resposta múltiple Proba obxectiva consistente en varias cuestións con 4 posibles respostas das que só unha delas é válida
Solución de problemas Formúlanse unha serie de problemas que o estudante debe resolver a partir dos coñecementos que se traballaron en teoría

Atención personalizada
Metodoloxías
Prácticas a través de TIC
Solución de problemas
Descrición
Para aprender a resolver os problemas propostos é importante consultar co profesor os avances que se vaian realizando progresivamente para ofrecer as orientacións necesarias en cada caso.

Os/as estudantes a tempo parcial teñen á súa disposición na plataforma Moodle tanto as presentacións da parte teórica como as prácticas que se resolven nas clases de problemas. Os profesores da materia, en horario de titorías, resolverán todas as dúbidas que lles xurdan ao traballar cos materiais anteriormente mencionados. Este tipo de estudantes poderá superar a materia sen realizar as probas de cada tema nin entregar os problemas propostos.

Avaliación
Metodoloxías Competencias Descrición Cualificación
Prácticas a través de TIC A1 A2 B15 C3 C18 C8 Os problemas propostos para entregar incluirán algún apartado que deba ser resolto utilizando MATLAB/Octave 5
Proba de resposta breve A1 B5 B8 C10 C12 Proba obxectiva dirixida a recordar conceptos básicos da materia de forma concisa. 20
Proba de resposta múltiple A1 B8 C10 C12 Proba obxectiva que pode conter cuestións con 4 posibles respostas das que só unha delas é válida, preguntas de verdadeiro ou falso ou cuestións de resposta curta que se realizarán ó rematar cada tema. 12
Proba obxectiva A1 B3 B6 B8 B7 C10 C11 C12 C16 Proba escrita utilizada para a avaliación da aprendizaxe, cuxo trazo distintivo é a posibilidadede determinar se as respostas dadas son ou non correctas. Permite avaliar coñecementos, capacidades, destrezas, rendemento, etc. 50
Solución de problemas A1 B2 B4 B9 B8 B18 B7 C10 C11 C12 C13 C15 C16 Formúlanse unha serie de problemas que o estudante debe resolver a partir dos coñecementos que se traballaron en teoría 13
 
Observacións avaliación
  • Exames teórico-prácticos:
    realizarase unha proba parcial ao final do primeiro cuadrimestre e outra ao
    final do segundo. Ademais, haberá un exame final en cada oportunidade.
  • Tanto na primeira como na segunda
    oportunidade, para aprobar a materia é necesario obter polo menos un 3,5 en
    cada unha das partes correspondentes aos dous cuadrimestres en que se divide a
    materia.
  • No exame da primeira
    oportunidade, os/as estudantes que non superen a materia por parciais, pero
    obteñan unha nota superior a 3,5 nalgún deses exames, poderán optar por non
    examinarse desa parte (compensando a nota coa da outra parte) ou ben examinarse
    de todo o contido da materia. Nese caso, tomarase a nota máis alta das obtidas
    no parcial e no exame final.
  • No exame da segunda oportunidade,
    os/as estudantes que obtivesen unha nota maior ou igual a 5 nalgunha das partes
    correspondentes aos dous parciais da primeira oportunidade poderán presentarse
    só á outra parte da materia.
  • Probas: ao final de cada tema
    realizarase unha proba/test voluntario de carácter teórico.
  • Problemas: en cada tema
    propoñeranse unha ou varias prácticas con problemas a resolver na aula.
    Nalgunhas destas prácticas utilizarase Octave ou MATLAB para a resolución das
    mesmas.

 En cada oportunidade, a nota final obtida será o máximo de:

a)    
(nota do exame (ou exames)).

b)    
(nota do exame (ou exames)) x0'7+
(nota de curso) x 0'3.

A nota de curso
calcúlase a partir da nota das probas (40%) e a nota de problemas (60%). Para
que esta nota sexa tida en conta é necesario asistir polo menos ao 80% de todas
as clases de problemas (con e sen entrega). A peor nota tanto de probas como de
prácticas non se terá en conta para a nota final (en caso de faltar a algunha
proba ou non entregar unha práctica, descartarase o cero que iso supoñería).

 

Para aprobar a materia, a nota final deberá ser maior ou igual a 5, e as
notas de cada unha das partes do exame (parciais) maior ou igual a 3.5. Por
iso, se a nota final é superior a 5 pero a cualificación dunha das partes do
exame (parciais) é inferior a 3.5, a nota final será 4.5.

 A realización fraudulenta de probas ou prácticas, unha vez comprobada,
implicará directamente a cualificación de "0" na nota de curso. No
caso dos exames, implicará directamente a cualificación de suspenso
"0" na materia na oportunidade correspondente.


Fontes de información
Bibliografía básica Grossman, S. I., Flores Godoy, J. J. (2012). Álgebra lineal. McGraw-Hill
Sanz Álvaro, P., Vázquez Hernández, F. J. (2013). Álgebra lineal : 450 cuestiones y problemas resueltos.. Garceta
Pelayo Melero, I. M., Rubio Montaner, F. (2008). Álgebra Lineal Básica para Ingeniería Civil. Ediciones UPC
Williams, G. (2001). Álgebra lineal con aplicaciones. McGraw-Hill
Merino González, L. M., Santos Aláez, E. (2006). Álgebra lineal con métodos elementales. Thomson
Martín Ordóñez, P. et al. (2014). Álgebra lineal para ingenieros . Delta Publicaciones
Hernández, E. et al. (2012). Álgebra lineal y geometría. Pearson
García Cabello, J. (2005). Álgebra lineal. Sus aplicaciones en economía, ingeniería y otras ciencias. Delta Publicaciones
Benavent, R. (2010). Cuestiones sobre álgebra lineal. Paraninfo
Pratap, R. (2010). Getting started with MATLAB. Oxford University Press
Baro González, E., Tomeo Perucha, V. (2014). Introducción al álgebra lineal. Garceta
de la Villa, A. (2010 (4ª Ed.)). Problemas de álgebra. CLAGSA
Lantarón, S. (2015). PROGRAMACION PARA INGENIERIA Y CIENCIAS CON MATLAB Y OCTAVE. Bellisco
Bibliografía complementaria Burgos, J. de (2007). Álgebra lineal: 80 problemas últiles. García Maroto
Lazo, A. (2008). álgebra preuniversitaria. Limusa
Burgos, J. de (2007). Fundamentos de Álgebra: 65 problemas útiles. García Maroto


Recomendacións
Materias que se recomenda ter cursado previamente

Materias que se recomenda cursar simultaneamente
Cálculo/632G01002

Materias que continúan o temario

Observacións


(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías