Identifying Data 2015/16
Subject (*) Álxebra lineal I Code 632G02007
Study programme
Grao en Tecnoloxía da Enxeñaría Civil
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
First FB 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Métodos Matemáticos e de Representación
Coordinador
Fuentes Garcia, Luis
E-mail
luis.fuentes@udc.es
Lecturers
Fuentes Garcia, Luis
Taboada Vazquez, Raquel
Villar Ferrer, Juan
E-mail
luis.fuentes@udc.es
raquel.taboada@udc.es
j.villar@udc.es
Web http://caminos.udc.es/info/asignaturas/grado_tecic/101/AL1/index.html
General description O obxectivo da materia é proporcionar unha formación sólida en Álxebra Lineal como fundamento matemático da enxeñaría. Esta primeira parte da materia céntrase no estudo e traballo en espazos vectoriales de dimensión finita.

Study programme competencies
Code Study programme competences
A1 Capacidad para plantear y resolver los problemas matemáticos que puedan plantearse en el ejercicio de la profesión. En particular, conocer, entender y utilizar la notación matemática, así como los conceptos y técnicas del álgebra y del cálculo infinitesimal, los métodos analíticos que permiten la resolución de ecuaciones diferenciales ordinarias y en derivadas parciales, la geometría diferencial clásica y la teoría de campos, para su aplicación en la resolución de problemas de Ingeniería Civil.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamiento crítico, lógico y creativo.
C1 Reciclaje continúo de conocimientos en el ámbito global de actuación de la Ingeniería Civil.
C4 Entender y aplicar el marco legal de la disciplina.
C6 Compresión de la necesidad de analizar la historia para entender el Presente.
C8 Facilidad para la integración en equipos multidisciplinares.

Learning aims
Learning outcomes Study programme competences
To know and to understand the basic theory of linear algebra required in civil engineering , especially the study of vector spaces. A1
Know, understand and manage elementary mathematical notation. A1
B3
Learn to express with precision and rigor. A1
C1
Learn to use the basic techniques of mathematical reasoning. A1
B2
B3
Understanding the importance of justifying the thesis and results in science . A1
B3
C4
C6
Develop critical thinking and analytical skills . A1
B2
B3
C4
C8
Learn to pose and solve mathematical problems of Linear Algebra, A1
B2
B3

Contents
Topic Sub-topic
I. Preliminars.
1. Correspondences and maps.
1.1 Sets Definiction and notation. Operations with sets.
1.2 Correspondences. Maps. Definition, properties and classification.

2. Combinatorics.
2.1. Product rule.
2.2. Variations.
2.3. Permutations.
2.4. Combinations.
II. Matrices and determinants. 1. Matrices.
1.1 Basic definitions.
1.2 Operations with matrices.
1.3 Special matrices.

2. Determinants.
2.1 Preliminars on permutacions.
2.2 Determinant of a square matrix: definition and properties.
2.3. Development of a determinant by adjoints.
2.4. Rank of a matrix.
2.5. Inverse of a matrix.

3. Equivalence and congruence of matrices.
3.1 Elementary transformations.
3.2 Row equivalence of matrices.
3.3 Column equivalence of matrices.
3.4 Matrix equivalence.
3.5 Matrix congruence.

4. Systems of linear equations.
4.1 Cramer's rule.
4.2 Rouche-Frobenius' Theorem.
4.3 Gaussian elimination.
III. Vectorial spaces. 1. Vectorial spaces and subspaces.
1.1 Definition and properties.
1.2 Vectorial subspaces.

2. Spanning systems. Free linear systems. Basis.
2.1 Linear combinations of vectors.
2.2 Linear dependence and indepdence of vectors.
2.3 Basis, dimension and coordinates.
2.4 Rank of a vector set.
2.5 Change of basis.
2.6 Equations of a subspace.
2.7 Dimension formula.

3. Linear maps.
3.1 Definitions and properties.
3.2 Matrix form of a linear map.
3.3 Change of basis.
3.4 Kernel and image of a linear.
3.5 Composition fo homomorphisms.

4. Endomorphisms.
4.1 Introduction.
4.2 Eigen values and eigen vectors.
4.3 Diagonalization by similarity.
4.4 Triangularization by similarity. Jordan form

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A1 B2 B3 27 32 59
Seminar A1 B2 B3 27 33 60
Mixed objective/subjective test A1 B2 B3 3 3 6
Problem solving A1 B2 B3 0 10 10
Workbook A1 B2 B3 0 10 10
 
Personalized attention 5 0 5
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech New mathematic concepts will be developed from examples familiar for the students, or explaining the questions are wished to be solved with them; from this their common caracthers will be abstracted causing its more accuracy deffinition. The theory which allows to solve the questions described at the beginning will be developed after.

Students participation is desirable, sharing their doubts or comments as the class progresses.
Seminar Simultaneously to the theoretical development of the matter collections of exercics are given.

The goal is allowing students to practise the knowledge adquierd at theorical classes.

At seminars the most important problems will be discussed.
Mixed objective/subjective test Exam where concepts are methods of the subjets are evaluated.
Problem solving Each student must solve individually some of the proposed problems.
Workbook Before the beginning of each item, some notes about the contents are avaiable for the students. The notes are intended as a complement of teacher's explanations.

A previous reading of students familiarize them with an outline of what they will study.


Personalized attention
Methodologies
Problem solving
Seminar
Guest lecture / keynote speech
Description

Assessment
Methodologies Competencies Description Qualification
Problem solving A1 B2 B3 Each student must solve individually some of the proposed problems. 10
Mixed objective/subjective test A1 B2 B3 Exam where concepts are methods of the subjets are evaluated. 90
 
Assessment comments

Sources of information
Basic Juan de Burgos (2000). Álgebra Lineal. McGraw-Hill
Fuentes, Salete y Cruces (1980). Álgebra vectorial y Tensorial. ETSICCP Madrid
F. Granero (1992). Álgebra y Geometría Analítica. McGraw-Hill
Luis Fuentes García (2005-). Apuntes y ejemplos (http://caminos.udc.es/info/asignaturas/grado_tecic/101/AL1/index.html). A Coruña
Anzola, Caruncho y Pérez-Canales (1981). Problemas de Álgebra (Tomos 1,3). Madrid
S. Lipschutz, M.L. Lipson (2000). Teoría y problemas de probabilidad. McGraw-Hill

Complementary S.I. Grossman (1995). Álgebra lineal. McGraw-Hill
J. Rojo (2001). Álgebra lineal. McGraw-Hill
J. Arvesú y otros (1999). Álgebra lineal y aplicaciones. Síntesis
M. Castellet e I. Llerena (1991). Álgebra lineal y geometría. Reverté
J. Flaquer y otros (1996). Curso de álgebra lineal. Ediciones Universidad de Navarra
J. Rojo e I. Martín (1994). Ejercicios y problemas de álgebra. McGraw-Hill
P. Sanz y otros (1998). Problemas de álgebra lineal. Prentice Hall
J. Pérez Vilaplana (1991). Problemas de cálculo de probabilidades. Paraninfo
F. Ayres Jr. (1991). Teoría y problemas de matrices. McGraw-Hill


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously
Cálculo infinitesimal I/632G02001

Subjects that continue the syllabus
Álxebra lineal II/632G02008
Cálculo de probabilidades e estatística/632G02013
Fundamentos de mecánica computacional/632G02015
Ecuacións diferenciais/632G02017

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.