Identifying Data 2015/16
Subject (*) Estruturas Metálicas e Mixtas Code 632G02031
Study programme
Grao en Tecnoloxía da Enxeñaría Civil
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Fourth Obligatoria 6
Language
Spanish
Galician
Teaching method Face-to-face
Prerequisites
Department Tecnoloxía da Construción
Coordinador
Romera Rodriguez, Luis Esteban
E-mail
l.romera@udc.es
Lecturers
Baldomir García, Aitor
Romera Rodriguez, Luis Esteban
E-mail
aitor.baldomir@udc.es
l.romera@udc.es
Web http://moodle.udc.es (632G02031-Estructuras Metálicas y Mixtas- Grado TECIC)
General description O obxectivo da materia é coñecer e comprender o funcionamento resistente das estruturas metálicas e mixtas, aplicándoo ao deseño e dimensionamiento das mesmas mediante as normativas existentes e coñecendo as bases nas que se fundamenta a normativa.
A normativa de referencia seguida é a Instrución de aceiro estrutural EAE, 3ª edición novembro do 2012, do Ministerio de Fomento, xunto cos Eurocódigos 3 (estruturas metálicas) e 4 (estruturas mixtas formigón e aceiro).

Study programme competencies
Code Study programme competences
A14 Conocimiento de los fundamentos del comportamiento de las estructuras de hormigón, metálicas y mixtas que permiten tener la capacidad para concebir, proyectar, construir y mantener este tipo de estructuras.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamiento crítico, lógico y creativo.
B4 Trabajar de forma autónoma con iniciativa.
B5 Trabajar de forma colaborativa.
B6 Comportarse con ética y responsabilidad social como ciudadano y como profesional.
B7 Comunicarse de manera efectiva en un entorno de trabajo.
B8 Expresarse correctamente, tanto de forma oral como por escrito, en las lenguas oficiales de la comunidad autónoma.
B9 Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero.
B10 Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida.
B11 Desarrollarse para el ejercicio de una ciudadanía abierta, culta, crítica, comprometida, democrática y solidaria, capaz de analizar la realidad, diagnosticar problemas, formular e implantar soluciones basadas en el conocimiento y orientadas al bien común.
B12 Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras.
B13 Valorar criticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.
B14 Asumir como profesional y ciudadano la importancia de aprendizaje a lo largo de la vida.
B15 Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad.
C1 Reciclaje continúo de conocimientos en el ámbito global de actuación de la Ingeniería Civil.
C2 Comprender la importancia de la innovación en la profesión.
C3 Aprovechamiento e incorporación de las nuevas tecnologías.
C4 Entender y aplicar el marco legal de la disciplina.
C5 Comprensión de la necesidad de actuar de forma enriquecedora sobre el medio ambiente contribuyendo al desarrollo sostenible.
C6 Compresión de la necesidad de analizar la historia para entender el Presente.
C7 Apreciación de la diversidad.
C8 Facilidad para la integración en equipos multidisciplinares.
C9 Capacidad para organizar y dirigir equipos de trabajo.
C10 Capacidad de análisis, síntesis y estructuración de la información y las Ideas.
C11 Claridad en la formulación de hipótesis.
C12 Capacidad de abstracción.
C13 Capacidad de trabajo personal, organizado y planificado.
C14 Capacidad de autoaprendizaje mediante la inquietud por buscar y adquirir nuevos conocimientos, potenciando el uso de las nuevas tecnologías de la información.
C15 Capacidad de enfrentarse a situaciones nuevas.
C16 Habilidades comunicativas y claridad de exposición oral y escrita.
C17 Capacidad para aumentar la calidad en el diseño gráfico de las presentaciones de trabajos.
C18 Capacidad para aplicar conocimientos básicos en el aprendizaje de conocimientos tecnológicos y en su puesta en práctica.
C19 Capacidad de realizar pruebas, ensayos y experimentos, analizando, sintetizando e interpretando los resultados.

Learning aims
Learning outcomes Study programme competences
Capacidade para aplicar os coñecementos sobre o funcionamento resistente das estruturas para dimensionalas seguindo as normativas existentes e utilizando métodos de cálculo analíticos e numéricos. A14
B1
B2
B3
B4
B5
B7
B8
B9
B10
B11
B15
C3
C6
C8
C10
C11
C12
C13
C14
C15
Coñecemento dos fundamentos do comportamento das estruturas metálicas e mixtas, e capacidade para concebir, proxectar, construír e manter este tipo de estruturas. A14
B3
B4
B9
B10
B12
B13
C2
C6
C7
C16
Capacidade para xerar de forma axeitada e racional modelos estruturais das estruturas reais para a súa resolución por códigos de computador. A14
B2
B10
B11
B14
C1
C3
C4
C5
C6
C9
C18
C19
Capacidade para interpretar de forma axeitada os resultados dos modelos computacionais de cálculo de estruturas. A14
B6
B13
B15
C3
C8
C17
C18
C19

Contents
Topic Sub-topic
1. A construción metálica e o aceiro estrutural Materiais metálicos. Vantaxes e inconvenientes. Normativas. Características dos aceiros. Criterios de plastificación. Tipos de aceiro estrutural. Produtos. Fabricación e montaxe. Tipos de pezas: rango de luces e aplicacións.
2. Bases de proxecto Seguridade estrutural. Bases de cálculo. Accións. Resistencia. Estados límite de servizo.
3. Análise estrutural Idealización da estrutura. Análise global. Clasificación das seccións transversais. Arrastre por cortante. Imperfeccións. Estabilidade lateral.
4. Estado límite de resistencia das seccións Axil, flector e cortante. Torsión uniforme. Torsión non uniforme e mixta. Comprobacións na sección transversal.
5. Estado límite de inestabilidade das barras Pandeo elástico de Euler. Lonxitude de pandeo e esbeltez. Curvas europeas de pandeo. Pandeo lateral. Pandeo por torsión. Viga-columna. Elementos compostos.
6. Software de cálculo e deseño Tipos de programas para o cálculo e deseño de estrutura metálica. Bases de cálculo en Sap2000. Exemplos de aplicación.
7. Aboladura Aboladura por cortante. Aboladura por cargas concentradas transversais. Rigidizadores. Interacción. Aboladura da alma inducida pola á comprimida.
8. Unións Tipos e clasificación. Unións atornilladas. Unións soldadas. Unións sometidas a axil. Unións sometidas a flexión e cortante. Unións viga-soporte. Unións a cimentación. Elementos de apoio. Software para o cálculo e deseño de unións.
9, Temas complementarios e aplicacións Vibracións. Fatiga. Durabilidad. Resistencia ao lume e protección. Unións entre pezas de sección tubular. Edificación urbana e industrial: exemplos de aplicación.
10. Estrutura mixta: formigón e aceiro Utilización e hipótese. Solicitaciones normais e transversais. Métodos de cálculo. Análise instantánea e diferida. Seccións mixtas pretensadas. Diagramas momento-curvatura e de interacción. Predimensionamiento e conectores. Procesos construtivos. Alicerces e forxados mixtos.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A14 B14 B13 B12 B11 B10 B9 B8 B7 B6 B3 B2 B1 C4 C5 C6 C7 C8 C12 C13 20 30 50
Problem solving A14 B10 B11 B15 B1 B2 B3 B4 B5 C19 C18 C17 C16 C15 C13 C11 C10 C9 C7 C6 C4 C2 C1 27 42 69
Laboratory practice A14 B8 B9 B10 B11 B1 B2 B3 B4 B5 B7 C3 C10 C12 C13 C14 C15 C16 C17 C18 C19 10 15 25
Objective test A14 B10 B11 B2 B3 B4 B7 C1 C3 C10 C11 C12 C13 C14 C15 C16 C19 4 0 4
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Exposición de contidos conceptuais dos diversos temas.
Problem solving Resolución das prácticas dos diferentes temas plantexados polos profesores.
Laboratory practice Resolución mediante computador de problemas de deseño expostos polos profesores.
Objective test Realización dos exames da materia nas datas establecidas ao efecto pola Comisión Docente da Escola.

Personalized attention
Methodologies
Guest lecture / keynote speech
Problem solving
Objective test
Laboratory practice
Description
Sesión maxistral:
Os alumnos deberán preguntar en titoría individual aqueles aspectos derenrolados nas sesións maxistrais que non foron suficientemente comprendidos e interiorizados.

Solución de problemas e prácticas de laboratorio:
Igualmente, os alumnos deberán resolver as dúbidas que se lles plantexen antes ou despois de que as prácticas de cada tema sexan resoltas na aula polos profesores da materia. Neste caso os alumnos poden acudir a titoría individualmente ou en grupo.

Proba obxectiva:
O estudante debe responder ás cuestións e/ou resolver os problemas plantexados durante os exames da materia.

Assessment
Methodologies Competencies Description Qualification
Problem solving A14 B10 B11 B15 B1 B2 B3 B4 B5 C19 C18 C17 C16 C15 C13 C11 C10 C9 C7 C6 C4 C2 C1 As prácticas propostas e entregadas polos estudantes durante o cuadrimestre valóranse cun máximo do 10% da nota final. 10
Objective test A14 B10 B11 B2 B3 B4 B7 C1 C3 C10 C11 C12 C13 C14 C15 C16 C19 O estudante debe responder ás cuestións e/ou resolver os problemas plantexados durante os exames da materia. 90
Laboratory practice A14 B8 B9 B10 B11 B1 B2 B3 B4 B5 B7 C3 C10 C12 C13 C14 C15 C16 C17 C18 C19 A súa valoración inclúese no apartado de solución de problemas. 0
 
Assessment comments

Para aprobar a materia é necesario obter un mínimo de 4 sobre 10 no exame, e de 5 sobre 10 ao sumar a nota de practícalas voluntarias á nota do exame.


Sources of information
Basic Gil, L. M. & Hernández, E. (2004). Acero Estructural. Universidad de Granada
Ortiz. J. & Villa, J. (2009). Cálculo de las Estructuras de Acero frente al Incendio. Publicaciones APTA
Pellicer, D., Sanz, C., Maya, E. (2003). Construcción de Estructuras Metálicas. Biblioteca Técnica Universitaria
Martínez, J. & Ortiz, J. (1978). Construcción Mixta Hormigón-Acero. Rueda
Hirt, M. A., Crisinel, M. (2005). Construction Métallique, Conception et dimensionnement des halles et bâtiments. Presses Polytechniques et Universitaires Romandes
Brozzetti, J., Hirt, M. A., Bez, R. (1995). Construction Métallique, Exemples numériques adaptés aux Eurocodes. Presses Polytechniques et Universitaires Romandes
Hirt, M. A., Bez, R., Nussbaumer, A. (2006). Construction Métallique, Notions fondamentales et méthodes de dimensionnement. Presses Polytechniques et Universitaires Romandes
Marco, J. (2000). Curso básico de cálculo y diseño de estructuras metálicas en ordenador (adaptado al Eurocódigo 3 y al LRFD). McGraw-Hill
Simoes da Silva L., Simoes R., Gervásio H. (2010). Design of Steel Structures (EC3). ECCS Eurocode Design Manuals
Hernández, S. & Doria, J. (). Diseño de Estructuras de Acero. E.T.S.I.C.C.P. Universidade da Coruña
Galambos, T.V., Lin F.J., Johnston, B.G. (1996). Diseño de Estructuras de Acero con LRFD. Prentice Hall
Doria, J., Hdez., S., Romera, L.E. (). Ejercicios de Estructuras de Acero. E.T.S.I.C.C.P. Universidade da Coruña
Martínez, R. (1990). Ejercicios de Estructuras Metálicas. Colección de Ingeniería y Arquitectura n.º 2
Martínez, R. (1996). Ejercicios de Estructuras Metálicas (conforme al Eurocódigo 3). Servicio de Publicaciones Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid
ESDEP (). ESDEP. Programa Europeo de Formación en Cálculo y Diseño de la Construcción en Acero. ITEA. Instituto Técnico de la Construcción de Acero
Argüelles, R. et al. (2007). Estructura de Acero. Uniones y Sistemas Estructurales. Bellisco
Labein-Tecnalia & Tectum Ingeniería (2009). Estructuras de Acero en Aparcamientos Subterráneos. Publicaciones APTA
Hurtado, C. et al. (2008). Estructuras de Acero en Edificación. Publicaciones APTA
Argüelles, R. et al. (2005). Estructuras de Acero. Cálculo. Bellisco
Quintero, F. & Cudós, V. (1995). Estructuras Metálicas. Escuela de la Edificación, UNED, Madrid
Monfort, J. (2006). Estructuras Metálicas para Edificación adaptado al CTE. Universidad Politécnica de Valencia
(1996). Eurocódigo 4. Parte 1-2: Proyecto de estructuras mixtas de hormigón y acero. AENOR
Marco, J. (1998). Fundamentos para el Cálculo y Diseño de Estructuras Metálicas de Acero Laminado. McGraw-Hill
Instituto para la Construcción Tubular (2000). Guía de Diseño para Edificios con Estructura de Acero. Instituto Técnico de la Estructura de Acero (ITEA)
Iglesias, G., Alonso, A., Chica, J.A. (2004). Guía de Diseño para Estructuras en Celosía resueltas con Perfiles Tubulares de Acero. Instituto de la Construcción Tubular (ICT)
Capellán, G. et al. (2009). Guía para el Apriete de Uniones con Tornillos Pretensados. Publicaciones APTA
Instituto Técnico de la Estructura de Acero (2000). Guia para el Diseño estructural en acero de naves industriales ligeras (DEANIL). Instituto Técnico de la Estructura de Acero (ITEA)
(2012). Instrucción de Acero Estructural (EAE). Ministerio de Fomento
Millanes, F. (). La flexión en estructura metálica. Análisis de esfuerzos y control de secciones. ETSICCP, Madrid
ENSIDESA (). Manual de cálculo de estructuras metálicas. Prontuario de ENSIDESA
Rodríguez, R. (1997). Manual de Estructuras Metálicas de Edificios Urbanos. CEDEX
Ortiz, J.; Hernando, J.I., Cervera, J. (2007). Manual de Uniones Atornilladas Frontales Pretensadas. Publicaciones APTA
Ortiz, J. et al. (2009). Manual de Uniones Atornilladas Laterales. Publicaciones APTA
Arnedo, A. (2009). Naves Industriales con Acero. Publicaciones APTA
(2008). Norma UNE-ENV 1993/1/1: Eurocódigo 3: Proyecto de estructuras metálicas. Parte 1-1: Reglas generales y reglas para edificios. AENOR
Wardenier, J. (2002). Perfiles Tubulares en Aplicaciones Estructurales. Instituto para la Construcción Tubular
Benito, J.L. & Carretero, J. (2012). Principios Básicos de Estructuras Metálicas. Adaptado a la nueva EAE y al EC-3. Vision Libros
Monfort, J., Pardo, J.L., Guardiola, A. (2008). Problemas de Estructuras Metálicas adaptados al Código Técnico. Universidad Politécnica de Valencia
Monfort, J., Pardo, J.L., Guardiola, A. (2002). Problemas de Estructuras Metálicas según los criterios del Eurocódigo 3. Universidad Politécnica de Valencia
Benito, J.L. & Carretero, J. (2012). Problemas de Estructuras Metálicas. Adaptado a la nueva EAE y al EC-3. Vision Libros
Rodríguez, R. (1999). Prontuario de Estructuras Metálicas. CEDEX
Navajas, P. & López, A. (2009). Protección y Durabilidad de las Estructuras de Acero. Publicaciones APTA
(1996). Recomendaciones para el proyecto de puentes metálicos para carreteras. RPM-95.. Ministerio de Fomento
(1996). Recomendaciones para el proyecto de puentes mixtos para carreteras. RPX-95. Ministerio de Fomento
Boissonade N., Greiner R., Jaspart J.P., Linder J. (2006). Rules for member stability in EC3. ECCS Technical Committee 8-Stability
Ambrose, J. (2007). Simplified Design of Steel Structures. John Wiley & Sons
Salmon, C. G. et al. (2009). Steel Structures. Design and Behaviour. Pearson, Prentice Hall
Vinnakota, S. (2006). Steel Structures: Behaviour and LRFD. McGraw-Hill
Martin, L. (2008). Structural Design of Steelwork to EN 1993 and EN 1994. Elsevier
Galambos, T.V., Surovek, A.E. (2008). Structural Stability of Steel: Concepts and Applications for Structural Engineers. John Wiley & Sons
Trahair, N. S. et al. (2008). The Behaviour and Design of Steel Structures to EC3. Taylor & Francis

Complementary (2006). Código Técnico de la Edificación (CTE). DB SE Seguridad Estructural: Bases de Cálculo. DB SE-AE Acciones en la Edificación. Ministerio de Vivienda
(2006). Código Técnico de la Edificación (CTE). DB SE-A Seguridad Estructural: Acero. Ministerio de Vivienda
(2011). IAP-11 Instrucción sobre las acciones a considerar en el proyecto de puentes de carretera. Ministerio de Fomento
(2007). IAPF-07 Instrucción sobre las acciones a considerar en el proyecto de puentes de ferrocarril. Ministerio de Fomento
(2008). NCSP-07 Norma de Construcción Sismorresistente: puentes. Ministerio de Fomento
(2002). NCSR-02 Norma de Construcción Sismorresistente: parte general y edificación. Ministerio de Fomento
(). Norma UNE-ENV 1991/2: Eurocódigo 1. Parte 2: Acciones en estructuras. AENOR
Viñuela, L. & Martínez, J. (2009). Proyecto y Construcción de Puentes Metálicos y Mixtos. Publicaciones APTA


Recommendations
Subjects that it is recommended to have taken before
Resistencia de materiais/632G02018
Estruturas I/632G02024
Estruturas II/632G02025

Subjects that are recommended to be taken simultaneously
Formigón Estrutural, Edificación e Prefabricación I/632G02029

Subjects that continue the syllabus

Other comments

No máster en Enxeñaría de Camiños, Canles e Portos aplícanse e desenvólvense os conceptos desta materia en materias optativas da especialidade de Estruturas e Construción.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.