Identifying Data 2022/23
Subject (*) Descriptive and Representation Geometry Code 670G01102
Study programme
Grao en Arquitectura Técnica
Descriptors Cycle Period Year Type Credits
Graduate Yearly
First Basic training 9
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Expresión Gráfica Arquitectónica
Coordinador
Fernández Álvarez, Ángel José
E-mail
angel.fernandez.alvarez@udc.es
Lecturers
Fernández Álvarez, Ángel José
E-mail
angel.fernandez.alvarez@udc.es
Web http://euat.udc.es
General description Esta asignatura ten como obxectivo a racionalización xeométrica dos temas espaciais. No ámbito académico achega o aparello básico sobre o que se apoiarán disciplinas gráficas máis especializadas como Expresión Gráfica Arquitectónica, Topografía e Proxectos Técnicos, así como o emprego do Deseño Asistido por Computador e a Informática Gráfica. Convértese así na "gramática" da linguaxe gráfica, sendo necesario o seu coñecemento para poder expresarse con corrección e eficacia.

Outra das achegas importantes á formación do Arquitecto Técnico é a súa contribución á configuración e racionalización dun modelo mental da realidade, o que comunmente se denomina "ver no espazo", aínda que sería máis exacta a expresión "imaxinar no espazo".

No ámbito profesional a lectura e interpretación de planos é unha das tarefas necesarias á hora de executar un proxecto de edificación, tendo que extraer dos documentos gráficos toda a información necesaria para a correcta execución da obra. Iso comporta un coñecemento da metodoloxía da representación, cuxa base é a Xeometría Descritiva.

No campo da redacción de proxectos técnicos achega a formación da visión espacial necesaria para a xénese da solución final que será tridimensional e dentro da función comunicativa da linguaxe gráfica a través de planos e esbozos, achega o substrato teórico básico dos distintos Sistemas de Representación.

Como materia que utiliza como medio de expresión a súa base gráfica e achega ao debuxo o rigor xeométrico que precisa, fai que esta disciplina sexa imprescindible na titulación de Grao en Arquitectura Técnica, para fornecer ao alumno os coñecementos necesarios que lle permitan desenvolver a súa capacidade creativa e imaxinativa, á vez que está clara a súa achega á práctica profesional, en canto á representación, resolución e restitución de calquera espazo ou elemento xeométrico tridimensional propio do ámbito da edificación.

Study programme competencies
Code Study programme competences
A38 A0.3 Ability to use spatial representation systems, sketching, dimensioning, and graphical representation language and techniques for building elements and processes.
B31 B1 Students will demonstrate knowledge and understanding of subjects that build upon the foundation of a general secondary education using advanced textbooks and ideas and analyses from the cutting edge of their field.
B32 B2 Students will be able to use their knowledge professionally and will possess the skills required to formulate and defend arguments and solve problems within their area of study.
B33 B3 Students will have the ability to gather and interpret relevant data (especially within their field of study) in order to make decisions and reflect on social, scientific and ethical matters.
B34 B4 Students will be able to communicate information, ideas, problems and solutions to specialist and non-specialist audiences alike.
B35 B5 Students will develop the learning skills and autonomy they need to continue their studies at postgraduate level.
C1 Adequate oral and written expression in the official languages.
C3 Using ICT in working contexts and lifelong learning.
C4 Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C6 Acquiring skills for healthy lifestyles, and healthy habits and routines.
C7 Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a sustainable environmental, economic, political and social development.
C8 Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.

Learning aims
Learning outcomes Study programme competences
Understand geometry as a graphic model capable of establishing spatial relationships that allow the understanding, description and control of constructive and architectural forms. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8
Know and apply the theoretical foundations, terminology, concepts, conventions, methods and layouts of the different Graphic Representation Systems applicable in building and architecture for the resolution of practical problems. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8
Solve positional problems (intersections, parallelism, perpendicularity) and metric problems (distances and angle determination) between the various geometric elements. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8
Know and represent in the different systems the main bodies and geometric surfaces of constructive and architectural application, both at the level of mathematical concept and graphic analysis and representation. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8
Know the general foundations of the Theory of Shadows as a geometric rationalization of the luminous phenomenon in the different Representation Systems of architectural application. A38
B31
B32
B33
B34
B35
C1
C3
C4
C7
C8
Applying the figured planes system (topographic projection) to the graphic resolution of roofs, to the representation of the terrain and to the resolution of modified topographies in the execution of esplanades and roads. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8
Apply the perspective spatial representation systems (Orthogonal Axonometry, Oblique Axonometry and Linear Perspective) to the graphic definition of architectural and construction elements. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8
Analyze and know the variations of the different elements of the linear perspective, the restitution of perspective images and their generation conditions. A38
B31
B32
B33
B34
B35
C1
C3
C4
C6
C7
C8

Contents
Topic Sub-topic
Lesson 1.- DIHEDRAL REPRESENTATION SYSTEM:
FUNDAMENTALS AND POSITIONAL PROBLEMS
Introduction. Basics. Fundamentals. Representation of point, line and plane. Spatial basic geometric relations. Parallelism.
Intersections. Perpendicularity
Lesson 2.- DIHEDRAL REPRESENTATION SYSTEM:
GRAPHICS METHODS AND METRIC PROBLEMS.
Geometric Procedures: Change of planes of projection. Rotations. Plans' Abatment (rotated planes method). Distances. Angles.
Lesson 3.- DIHEDRAL REPRESENTATION SYSTEM:
ANALYSIS AND REPRESENTATION OF SURFACES
Representation of surfaces. Regular polyhedra. Radiating polyhedra: Pyramid and Prism. Radiated Quadrics: Cone and Cylinder. Representation of the Sphere.
Lesson 4. DIHEDRAL REPRESENTATION SYSTEM:
INTERSECTION OF SURFACES AND THEORY OF SHADOWS
Intersection of surfaces. Methods. Architectural applications: vaults, domes and lunettes. Shadow Theory applied to Diedral System.
Lesson 5.- FIGURED PLANS SYSTEM (TOPOGRAPHICAL PROJECTION): FUNDAMENTALS Introduction. Fundamentals. Representation of the plane.
Positional Problems: parallelism, perpendicularity, intersections. Abatments. Metrical problems: distances and angles. Representation of geometric surfaces.
Lesson 6.- FIGURED PLANS SYSTEM (TOPOGRAPHICAL PROJECTION): APPLICATIONS IN BUILDING. ROOFS. LAND REPRESENTATION.
Graphical resolution of roofs. Topographical surfaces and interventions on the ground: dirt moving and road layout.
Lesson 7.- ORTHOGONAL AXONOMETRY. Fundamentals and implementation. Orthogonal axonometry. Overview. Axonometry classes. Tri-rectangle triangle. Axonometric axes. Axonometric scales. Schlömilch-Waisbach theorem. Representation of the fundamental geometric elements: point, line and plane. Positional problems. Intersections. Parallelism and perpendicularity. Implementation in orthogonal axonometry: representation of plane figures, geometric bodies and shadow theory.
Lesson 8.- OBLIQUE AXONOMETRIES: Cavalier (cabinet) and Military Perspective. Fundamentals and implementation. Oblique Axonometry. Overview. Pohlke's theorem. Cavalier (cabinet) and Military perspective. Projection direction. Reduction coefficients. Representation of the fundamental geometric elements: point, line and plane. Positional problems. Intersections. Parallelism and perpendicularity. Implementation in oblique axonometry: representation of plane figures, geometric bodies and Shadow Theory.
Lesson 9.LINEAR PERSPECTIVE. Fundamentals. Generalities and conventions. Representation of the fundamental geometric elements: point, line and plane.
Positional problems. Intersections. Parallelism. Perpendicularity. Rotated plane method. Metric problems.
Tema 10. LINEAR PERSPECTIVE. Implementation. Visual perception and representation. Influence of the relative position of the elements of the linear perspective. Vision angle. Classification of linear perspectives according to the position of the Point of View and the Plane of the Picture. Perspective restitution and Shadow Theory.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A38 B31 B32 B33 B34 B35 C1 C3 C4 C6 C7 C8 45 60 105
Problem solving A38 B31 B32 B33 B34 B35 C1 C3 C4 C6 C7 C8 45 65 110
Objective test A38 B31 B32 B33 B34 B35 C1 C3 C4 C6 C7 C8 6 0 6
 
Personalized attention 4 0 4
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Oral and graphic presentation in the classroom supplemented by the optional use of audiovisual media and ICT as well as the introduction of questions to students in order to transmit knowledge and facilitate learning.
Problem solving Students will face situation where they will solve a particular problem with multiple solutions using the knowledge we have worked in the lecture. Within this dynamic, interactive personalized attention will take place.
Objective test Graphic test for the assessment of learning, whose distinctive feature is the ability to determine whether the answers are correct or not. It is a measuring element that allows to assess knowledge, abilities, skills, performance, attitudes, intelligence, etc. It is applicable for both diagnostic, formative and summative evaluation.

Personalized attention
Methodologies
Problem solving
Description
The needs and questions of the students related to the study or similar topics with the course will be adressed, while giving them orientation, support and motivation throughout the learning process.

Assessment
Methodologies Competencies Description Qualification
Objective test A38 B31 B32 B33 B34 B35 C1 C3 C4 C6 C7 C8 Objective tests will be carried out during the course on the contents of the different Representation Systems. These tests will have characteristics similar to the exercises developed in the interactive classes and will serve to articulate a continuous evaluation process.s applicable for both diagnostic, formative and summative evaluation. 100
 
Assessment comments

Attendance at both expository classes (THEORY) and interactive classes (PRACTICE) is considered mandatory, so students must meet minimum attendance requirements to be able to take the objective tests. This minimum attendance will be 80%.

The objective scoring tests will be scored on 10 points each. The overall final grade of these tests will be obtained by adding the scores of each of them and dividing this sum by the number of tests carried out. In order for this average to be made, a minimum score of 4 points must be obtained in the test that includes all the contents of the corresponding system. In order to pass the course, it will be compulsory to take ALL the objective tests. The schedule and content of the objective tests will be communicated to the students at the beginning of the teaching activities.

In addition to the assistance, participation and performance of supervised works, the tests deemed necessary may be carried out in order to adequately assess the degree of assimilation of the conceptual and procedural contents of the subject.

The student who achieves a global average grade of 5 points or higher in the sum of the objective scoring tests developed during the course will pass the subject.

Students who do not reach the minimum global grade of 5 points must sit the official Final Exam of the subject to be held at the end of the 2nd semester (First Chance) according to the official calendar approved by the School Board.

Those approved will be saved in the objective scoring tests carried out during the annual teaching period but by complete systems (DIÉDRICO, BOXED, AXONOMETRY, PERSPECTIVE). This condition is considered linked to the corresponding academic year and therefore these passes will be kept for the First Chance (May / June) and Second Chance (July) but exclusively during the current course and this reservation will not be maintained for subsequent courses. Nor will the partial passes approved by the system that could be produced in the final exam corresponding to the First Opportunity (MAY / JUNE) be saved for the Second Chance.

IMPORTANT NOTE. In order for the student to have a passing grade in the final exams, they must obtain an overall average grade of 5 points or higher in the sum of the proposed exercises, but it will be mandatory to score in all the exercises corresponding to the different Representation Systems. A grade of 0 in any of them would give rise to a failure grade in the subject.

Implications of plagiarism: Fraudulent performance of the tests or evaluation activities, once verified, will directly imply the failing grade "0" in the subject in the corresponding call, thus invalidating any grade obtained in all the evaluation activities with a view to extraordinary call.


Sources of information
Basic FERRER MUÑOZ (1996). Axonometrías. Sistema de representación axonométrico. Paraninfo
GIMÉNEZ PERIS, Vicente (2007). Diédrico Directo. Tomo I. Teoría y 190 ejercicios de aplicación. Edición del autor
GIMÉNEZ PERIS, Vicente (2014). Diédrico Directo. Tomo II. Superficies, Intersecciones, CAD, Sombras. Edición del autor
IZQUIERDO ASENSI, Fernando (). Ejercicios de Geometría Descriptiva Tomo II. Sistema Acotado y Axonométrico. F. Izquierdo
IZQUIERDO ASENSI, Fernando (). Ejercicios de Geometría descriptiva. Tomo IV. Sistema Cónico.
FERNÁNDEZ SAN ELÍAS, Gaspar (1999). Fundamentos del Sistema Diédrico. Universidad de León
IZQUIERDO ASENSI, Fernando (Varias ediciones). Geometría Descriptiva.
FRANCO TABOADA, José Antonio (2011). Geometría Descriptiva para la representación arquitectónica. Vol. 1. Fundamentos. Santiago de Compostela: Andavira Editora
FRANCO TABOADA, José Antonio (2011). Geometría Descriptiva para la representación arquitectónica. Vol. 2. Geometría de la forma. Santiago de Compostela: Andavira Editora
TAIBO FERNÁNDEZ, Ángel (2010). Geometría Descriptiva y sus aplicaciones. Tomo I. Punto, Recta y Plano. Tébar
TAIBO FERNÁNDEZ, Ángel (2007). Geometría descriptiva y sus aplicaciones. Tomo II. Curvas y Superficies. Tébar
BARDÉS FAURA, Lluis; GIMÉNEZ RIBERA, José Manuel (2001). Geometría Descriptiva. Plans acotats i perspectives. Exercicis. Edicións UPC
BARDÉS FAURA, Lluis; GIMÉNEZ RIBERA, José Manuel (1999). Geometría Descriptiva. Sistema Dièdric. Exercicis. Edicións UPC
MARTÍN MOREJÓN, Luís (1978-80). Geometría Descriptiva. Sistema Diédrico (2 vol). Sevilla
SÁNCHEZ GALLEGO, Juan Antonio (1997). Geometría Descriptiva. Sistemas de Proyección Cilíndrica. Edicións UPC
PALANCAR PENELLA (1985). Geometría descriptiva. Sistemas de representación axonométrica. Caballera. Planos Acotados. Madrid: M. Palancar
RODRÍGUEZ DE ABAJO, F. J. (Varias ediciones). Geometría Descriptiva. Tomo I. Sistema Diédrico. Donostiarra
RODRÍGUEZ DE ABAJO, F. J. (Varias ediciones). Geometría Descriptiva. Tomo II. Sistema de Planos Acotados. Donostiarra
RODRIGUEZ DE ABAJO (). Geometría Descriptiva. Tomo III: Sistema de Perspectiva Caballera..
RODR͍GUEZ DE ABAJO (). Geometría Descriptiva. Tomo IV: Sistema Axonométrico..
RODRÍGUEZ DE ABAJO (). Geometría Descriptiva. Tomo V. Sistema Cónico..
COBOS GUTIERREZ, Carlos (2001). Geometría para Ingenieros. Tomo I: Representación Diédrica. Tébar
RENDÓN GÓMEZ, Álvaro (2001). Geometría paso a paso. Geometría Proyectiva y Sistemas de Representación. Vol. I. (1ª parte). Madrid: Editorial Tébar
GENTIL BALDRICH, José María (1998). Método y aplicación de representación acotada y del terreno. Bellisco
VILLANUEVA BARTRINA (2001). Perspectiva lineal. Su relación con la fotografía. Edicións UPC
BARTOLOMÉ RAMÍREZ (2011). Perspectiva: fundamentos y aplicaciones. Universidad de La Rioja. Servivio de publicaciones
FERNÁNDEZ SAN ELÍAS, Gaspar (2004). Sistema Acotado. Problemas y Aplicaciones. Asociación de Investigación Instituto Automática y Fabricación

Complementary IZQUIERDO ASENSI, F. (2002). Construcciones Geométricas.
ÁLVAREZ BENGOA; RODRÍGUEZ DE ABAJO (). Curso de Dibujo Geométrico y Croquización.
IZQUIERDO ASENSI, F. (2005). Fórmulas y Propiedades Geométricas.
IZQUIERDO ASENSI, F. (Varias ediciones). Geometría Descriptiva Superior y Aplicada.
RENDÓN GÓMEZ, Álvaro (2016). Geometría paso a paso. Vol. I. Elementos de Geometría Métrica y sus aplicaciones en Arte, Ingeniería y Construcción. Editorial Tébar Flores


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously
Digital Graphic Tools for Building/670G01109
Architectural Graphic Expression I/670G01103

Subjects that continue the syllabus
Architectural Graphic Expression II/670G01117
Topography and Setting out/670G01119

Other comments

By addressing the basics of graphical representation, it is recommended to study the subject of Descriptive Geometry prior or simultaneous to other subjects in the area of Architectural Graphic Expression.

Prerequisites

It is recommended to have studied the subject of Technical Drawing in high school or equivalent training as it is considered that the student must be accustomed to using conventional instruments of graphical representation. They also should know the most basic aspects of the different systems of representation, especially Diedric System and basic planar geometry layouts (angles, polygons, conic sections, elementary trigonometry, etc.).



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.