Identifying Data 2018/19
Subject (*) Thermodynamics Code 730G03014
Study programme
Grao en Enxeñaría Mecánica
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Second Obligatory 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Ciencias da Navegación e Enxeñaría Mariña
Enxeñaría Naval e Industrial
Coordinador
Calvo Diaz, Jose Ramon
E-mail
jose.ramon.calvo@udc.es
Lecturers
Calvo Diaz, Jose Ramon
Lamas Galdo, Isabel
E-mail
jose.ramon.calvo@udc.es
isabel.lamas.galdo@udc.es
Web http://www.udc.es
General description Estudo da relación entre o calor, traballo e diversas formas de enerxía.

Study programme competencies
Code Study programme competences
A7 Coñecementos de termodinámica aplicada e transmisión de calor. Principios básicos e a súa aplicación á resolución de problemas de enxeñaría.
B1 Que os estudantes demostren posuír e comprender coñecementos nunha área de estudo que parte da base da educación secundaria xeral e adoita encontrarse a un nivel que, aínda que se apoia en libros de texto avanzados, inclúe tamén algúns aspectos que implican coñecementos procedentes da vangarda do seu campo de estudo
B3 Que os estudantes teñan a capacidade de reunir e interpretar datos relevantes (normalmente dentro da súa área de estudo) para emitiren xuízos que inclúan unha reflexión sobre temas relevantes de índole social, científica ou ética
B5 Que os estudantes desenvolvan aquelas habilidades de aprendizaxe necesarias para emprenderen estudos posteriores cun alto grao de autonomía
B7 Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas
B9 Adquirir unha formación metodolóxica que garanta o desenvolvemento de proxectos de investigación (de carácter cuantitativo e/ou cualitativo) cunha finalidade estratéxica e que contribúan a situarnos na vangarda do coñecemento
C4 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C6 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences
Modelar matematicamente sistemas e procesos relacionados a la utilización y generación de la energía A7
B1
B3
B5
B7
B9
C4
C6
Aprender a aprender A7
B1
B3
B5
B7
B9
C4
C6
Resolver problemas de forma efectiva. A7
B1
B3
B5
B7
B9
C4
C6
Capacidad de abstracción, comprensión y simplificación de problemas complejos. A7
B1
B3
B5
B7
B9
C4
C6

Contents
Topic Sub-topic
Os bloques ou temas seguintes desenrolan os contidos establecidos na ficha da Memoria de Verificación, que son: Introdución
Conservación da enerxía
Propiedades das sustancias puras
Análise de volume de control
Segundo principio. Entropía
Análise exerxética
1. Introduction to Thermodynamics
Applications of Thermodynamics. Continuum medium. Basic concepts: system, surroundings, state, thermodynamical property, equilibrium. Characterization and measurement of primitive properties: pressure, volume, temperature. Temperature scale. Gas thermometer.
2. Work, energy and the 1st law of Thermodynamics (conservation of energy) Review of mechanical concepts of energy. Examples: energy balance. Concept of work. Electric work. Examples. Cuasi-equilibrium processes and work. Heat iteration. Examples of heat and work. Internal energy and total energy. Conservation of energy. Heat transfer at constant pressure and volume. Enthalpy. Internal energy and enthalpy of ideal gasses and compressible flows. Tables of ideal gasses.
3. Propiedades de una sustancia pura Ideal gas equation of state and characterization of the state using two independent properties. Incompressible flows. Phase diagrams and phases of a pure substance. Pure simple compressible substances. Characterization of pure simple compressible substances. Equation of state and thermodynamical surfaces. (p, v) and (T, v) diagrams of a pure simple compressible substance. Tables of thermodynamic properties and reference states for water refrigerants. Examples.
4. Conservation of energy and 1st law of Thermodynamics Vapor turbines, hydraulic turbines, compressors, nozzles, heat exchangers. Concept of control volume (open system). Conservation of mass. Examples. Conservation of energy and input/output works. Conservation of mass and energy applied to thermal machines. Steady and transient states. Filling and emptying of tanks.
5. 2nd law of Thermodynamics and introduction to thermodynamic cycles Concept of reversibility. Irreversible processes. Spontaneous processes. Internally reversible processes. Thermal reservoir. Power cycles and refrigerators. Efficiency and coefficient of performance (COP). 2nd law of Thermodynamics: Kelvin-Plank and Clausius statements. Equivalence between both statements. Carnot cycle of an ideal gas inside a cylinder-piston system. Efficiency of a reversible power cycle.
Corollaries of the 2nd law of thermodynamics. Kelvin temperature scale. Clausius inequality.
6. Entropy Analogy between work-pressure and heat-temperature in reversible process. Entropy as thermodynamic property. Thermodynamic equations related to entropy. Equations for ideal gasses. Tables of properties for pure simple compressible substances. (T, s) and (h, s) diagrams. Generation of entropy in irreversible processes. Generation and transfer of entropy. Open system. Application to thermal machines. Efficiency in thermal machines: compressors, pumps, turbines, nozzles. Applications.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Problem solving A7 A7 B1 B1 B3 B5 B7 B9 C4 C6 30 40 70
Guest lecture / keynote speech A7 B9 B1 B3 B5 B7 B9 C4 C6 C4 C6 40 30 70
Long answer / essay questions A7 B3 B5 B7 B1 B3 B5 9 0 9
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Problem solving Students learn the software EES (Engineering Equation Solver). Thermodynamical problems will be solved using EES.
There will also be lab work.
Guest lecture / keynote speech Conventional classes.
Long answer / essay questions Two exams

Personalized attention
Methodologies
Problem solving
Description
Personal attention will be provided to the students.

Academic dispense is allowed. Students who request it must contact teacher to realize additional homework.

Assessment
Methodologies Competencies Description Qualification
Problem solving A7 A7 B1 B1 B3 B5 B7 B9 C4 C6 Students may deliver some exercises and lab work 30
Long answer / essay questions A7 B3 B5 B7 B1 B3 B5 Exam/s. In order to pass it is neccesary to obtain at least 3.5 at the final exam and 5 final score. 70
 
Assessment comments

Students
who request academic dispense must realize other activities proposed by the
teacher. The qualification is the same as the practice.


Sources of information
Basic M. Moran y H. N Shapiro (2004). Fundamentals of Engineering Thermodynamics. John Willey & Sons
J. Mª Sáiz Jabardo (2008). Introducción a la Termodinámica.
Y. A. Çengel y M. A. Boles. (2006). Thermodynamics. McGraw-Hill

Complementary


Recommendations
Subjects that it is recommended to have taken before
CALCULUS/730G01101
PHYSICS I/730G01102
DIFFERENTIAL EQUATIONS/730G01110
MECHANICS/730G01118

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
FLUID MECHANICS/730G01119
Industrial Heat Transfer/730G03020
Fluid and Thermal Machines/730G03023

Other comments

To help achieve a sustained immediate environment and meet the objective of action number 5: "Healthy and sustainable environmental and social teaching and research" of the "Green Campus Ferrol Action Plan":

            The delivery of the documentary works that are made in this matter:

              • Will be requested in virtual format and / or computer support

             • It will be done through Moodle, in digital format without the need to print them

             • If it is necessary to make them on paper:

                  - Plastics will not be used

                 - Double-sided prints will be made.

                 - Recycled paper will be used.

                 - Printing of drafts will be avoided.

              • A sustainable use of resources and the prevention of negative impacts on the natural environment must be made

              • The importance of ethical principles related to the values ??of sustainability in personal and professional behaviors must be taken into account

              • Gender perspective is incorporated into the teaching of this subject (non-sexist language will be used, bibliography of authors of both sexes will be used, intervention in class of students will be encouraged ...)

              • Work will be done to identify and modify prejudices and sexist attitudes, and the environment will be influenced to modify them and promote values ??of respect and equality.

              • Discrimination situations must be detected and actions and measures will be proposed to correct them.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.