Datos Identificativos 2017/18
Asignatura (*) CALOR Y FRIO INDUSTRIAL/REFRIG Código 730G03020
Titulación
Grao en Enxeñaría Mecánica
Descriptores Ciclo Periodo Curso Tipo Créditos
Grado 2º cuatrimestre
Tercero Obligatoria 6
Idioma
Castellano
Modalidad docente Presencial
Prerrequisitos
Departamento Ciencias da Navegación e Enxeñaría Mariña
Construcións Navais
Enxeñaría Naval e Industrial
Coordinador/a
Lamas Galdo, Isabel
Correo electrónico
isabel.lamas.galdo@udc.es
Profesorado
Arce Ceinos, Alberto
Lamas Galdo, Isabel
Correo electrónico
alberto.arce@udc.es
isabel.lamas.galdo@udc.es
Web
Descripción general Aportar al alumno los fundamentos de la transmisión de calor e introducirle en el equipo básico implicado en esta operación.
Asentar y completar los conocimientos del alumno sobre conducción y convección de calor, incorporar el estudio de la radiación como mecanismo de transporte.
Estudiar los fundamentos de la transmisión de calor en flujo externo e interno de fluidos para su posterior aplicación a operaciones basadas en la mecánica de fluidos.
Dar una visión global de los equipos de intercambio de calor de uso industrial, y capacitar al alumno para realizar el diseño de algunos equipos sencillos.

Competencias del título
Código Competencias del título
A7 Conocimientos de termodinámica aplicada y transmisión de calor. Principios básicos y su aplicación a la resolución de problemas de ingeniería.
A21 Conocimientos aplicados de ingeniería térmica.
B1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
B2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
B5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 Ser capaz de concebir, diseñar o poner en práctica y adoptar un proceso sustancial de investigación con rigor científico para resolver cualquier problema planteado, así como de que comuniquen sus conclusiones -y los conocimientos y razones últimas que la sustentan- públicos especializados y no especializados de una manera clara y sin ambigüedades.
B7 Ser capaz de realizar un análisis crítico, evaluación y síntesis de ideas nuevas y complejas.
B8 Diseñar y realizar investigación en entornos nuevos o poco conocidos, con aplicación de técnicas de investigación (tanto con metodologías cuantitativas como cualitativa) en distintos contextos (ámbito público o privado, con equipos homogéneos o multidisciplinares, etc.) para identificar problemas y necesidades.
B9 Adquirir una formación metodológica que garantice el desarrollo de proyectos de investigación (de carácter cuantitativo y/o cualitativo) con una finalidad estratégica y contribuyan a situarnos en la vanguardia del conocimiento.
C1 Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida.
C2 Desarrollarse para el ejercicio de una ciudadanía abierta, culta, crítica, comprometida, democrática y solidaria, capaz de analizar la realidad, diagnosticar problemas, formular e implantar soluciones basadas en el conocimiento y orientadas al bien común.
C3 Entender la importancia de la cultura emprendedora y conocer los medios al alcance de las personas emprendedoras.
C4 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.
C5 Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida.
C6 Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad.

Resultados de aprendizaje
Resultados de aprendizaje Competencias del título
Aportar al alumno los fundamentos de la transmisión de calor e introducirle en el equipo básico implicado en esta operación. Asentar y completar los conocimientos del alumno sobre conducción y convección de calor, incorporar el estudio de la radiación como mecanismo de transporte. Estudiar los fundamentos de la transmisión de calor en flujo externo e interno de fluidos para su posterior aplicación a operaciones basadas en la mecánica de fluidos. Dar una visión global de los equipos de intercambio de calor de uso industrial, y capacitar al alumno para realizar el diseño de algunos equipos sencillos. A7
A21
B1
B2
B3
B4
B5
B6
B7
B8
B9
C1
C2
C3
C4
C5
C6
Utilización de las fuentes de conocimientos de transmisión de calor y su importancia en procesos industriales más usuales, y desarrollo de una capacidad de trabajo autónomo a partir de las mismas. Utilización de la informática, programas de texto y hojas de cálculo (Microsoft Excel y EES). Utilización del principal idioma en la utilización de fuentes, el inglés. Desarrollo de la capacidad de abstracción y modelización, con la utilización de equipos de transmisión de calor en la representación y apreciación de la realidad de los procesos industriales que envuelvan transmisión de calor. Fomentar el trabajo individual y en grupo de los alumnos. A7
A21
B1
B2
B3
B4
B5
B6
B7
B8
B9
C1
C2
C3
C4
C5
C6

Contenidos
Tema Subtema
1. Introducción a la transmisión de calor 1.1. Historia
1.2. Aplicaciones
1.3. Fundamentos
1.4. Leyes constitutivas ó fenomenológicas
1.4.1. Conducción de calor
1.4.2. Convección de calor
1.4.3. Radiación térmica
1.5. Condiciones de contorno en la superficie de un sólido

Problemas
2. Conducción de calor estacionaria unidimensional 2.1. Ecuación general de conducción de calor
2.2. Pared plana
2.3. Resistencia térmica de contacto
2.4. Conducción con generación interna
2.5. Problemas en coordenadas cilíndricas
2.6. Problemas en coordenadas esféricas
2.7. Aletas
2.7.1. Ecuación general de aletas unidimensionales
2.7.2. Aletas de sección transversal constante
2.7.3. Transferencia de calor por la aleta
2.7.4. Eficiencia de aleta
2.7.5. Longitud corregida
2.7.6. Eficiencia global de una superficie aleteada
Problemas
3. Conducción de calor estacionaria
en dos y tres dimensiones
1. Introducción
2. Métodos analíticos
3. Métodos gráficos
4. Métodos numéricos
5. Resolución de sistemas de ecuaciones algebraicas:
5.1. Método de inversión de matrices
5.2. Método Iterativo de Gauss-Siedel
5.3. Método de Relajación
Problemas
4. Conducción de calor no estacionaria 4.1. Análisis simplificado
4.2. El sólido semi-infinito
4.2.1 Contacto entre dos sólidos semi-infinitos
4.3. Conducción transitoria unidimensional
Problemas
5. Convección en flujo exterior 5.1 Capa Límite
5.1.1. Ecuaciones integrales en la capa límite–placa plana
5.2. Método Integral-placa plana
5.2.1. Capa límite hidrodinámica
5.2.2. Capa límite térmica
5.2.3. Analogía de Colburn
5.2.4. Resumen de las correlaciones
5.3 Capa límite turbulenta-placa plana
5.3.1. Capa hidrodinámica
5.3.2. Capa térmica
5.4. Flujo exterior a cilindros
5.5. Resumen de las correlaciones para flujo exterior
Problemas
6. Convección en flujo interior 6.1. Región de entrada
6.2. Región de entrada térmica
6.3. Flujo laminar desarrollado
6.3.1. Velocidad y coeficiente de rozamiento
6.3.2. Transferencia de calor
6.4. Flujo turbulento
Problemas
7. Convección con cambio de fase 7.1. Introducción
7.2. Ebullición
7.2.1. Curva de ebullición
7.3. Condensación
7.3.1. Condensación en película
7.3.2. Condensación en gotas
8. Intercambiadores de calor
8.1. Introducción
8.2. Tipos de intercambiadores
8.3. Coeficiente global de transferencia de calor
8.4. Diferencia media de temperaturas logarítmica
8.5. Número de Unidades de Transferencia, NUT
Problemas
9. Radiación térmica
9.1. Introducción
9.2. Conceptos básicos
9.3. El cuerpo negro
9.4. Superficies reales
9.5. La ley de Kirchoff
9.6. Transferencia de calor por radiación entre superficies-Introducción
9.7. Álgebra de los factores de forma
9.8. Intercambio de calor entre dos superficies
9.9. Envoltorios de superficies negras
9.10. Envoltorios de “N” superficies difusas, grises, opacas e isotérmicas
9.11. Blindajes de radiación
9.12. Transferencia simultánea de calor por convección y radiación
9.13. Transferencia de calor por radiación con medio participante
Práctica 1. Medición de la temperatura Familiarización con distintos dispositivos de medida de temperatura: Termómetro de bulbo, bourdon, expansión metálica, termopar, termistor y PT100
Medición de la temperatura de la mezcla agua-hielo y agua en ebullición
Práctica 2. Estudio de la conducción de calor
Comprobación de la Ley de Fourier de conducción aplicada a una pared plana con un gradiente lineal de temperatura
Práctica 3. Determinación de la conductividad de un sólido Determinación de la conductividad térmica de distintos materiales a partir de la Ley de Fourier de conducción estacionaria aplicada a una pared plana.
Práctica 4. Convección en flujo exterior en un cilindro Estudio del desprendimiento de la capa límite de un fluido en circulación sobre la superficie de un cilindro observando la temperatura sobre la superficie cilíndrica
Práctica 5. Estudio de un intercambiador de carcasa y tubos Estudio del coeficiente integral de transmisión de calor para diferentes condiciones de operación y su variación con la diferencia de temperaturas media logarítmica
Comparación con intercambiador de placas
Práctica 6. Estudio de un intercambiador de placas
Estudio del coeficiente integral de transmisión de calor para diferentes condiciones de operación y su variación con la diferencia de temperaturas media logarítmica
Comparación con intercambiador de carcasa y tubos

Planificación
Metodologías / pruebas Competéncias Horas presenciales Horas no presenciales / trabajo autónomo Horas totales
Sesión magistral A7 A21 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 C2 C3 C4 C5 C6 15 25 40
Solución de problemas A7 A21 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 C2 C3 C4 C5 C6 45 20 65
Prácticas de laboratorio A7 A21 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 C2 C3 C4 C5 C6 4 40 44
 
Atención personalizada 1 0 1
 
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

Metodologías
Metodologías Descripción
Sesión magistral Presentaciones en powerpoint
Solución de problemas Resolución de problemas propostos en encerado
Prácticas de laboratorio Realización de ensaios no laboratorio

Atención personalizada
Metodologías
Sesión magistral
Solución de problemas
Prácticas de laboratorio
Descripción
Tutorías e consulta en correo electrónico

Evaluación
Metodologías Competéncias Descripción Calificación
Sesión magistral A7 A21 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 C2 C3 C4 C5 C6 Clases 24
Solución de problemas A7 A21 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 C2 C3 C4 C5 C6 Proba escrita 56
Prácticas de laboratorio A7 A21 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 C2 C3 C4 C5 C6 Entregar informe 20
 
Observaciones evaluación
<p><strong>Obligatoriedad de las prácticas</strong>:</p>
<p>&nbsp;La asistencia a prácticas de laboratorio y a través de TIC (EES) es obligatoira, tolerándose sólo una falta justificada. La realización de las prácticas es un requisito necesario para aprobar la materia.</p>
<p><strong>Exámen</strong>: </p>
<p>La prueba escrita consta de una parte de teoría sin consulta de aproximadamente 45 minutos de duración, seguida de una parte de problemas con consulta de 180 minutos de duración. </p>
<p><strong>Los informes de prácticas</strong>:</p>
<p>Los informes de prácticas de laboratorio han de entregrase en un plazo máximo de una semana desde la realización de la práctica. Los informes deben tener la siguiente estructura: </p>
  • Objetivos
  • Descripción del Equipo y Materiales
  • Desarrollo Experimental
  • Resultados y Discusión
  • Conclusiones
  • Bibliografía

  • <p>Los informes de prácitcas a través de TIC han de entregrase en un plazo máximo de una semana desde la realización de la práctica.</p>

    Fuentes de información
    Básica Incropera, F. P. e DeWitt, D. P., (1999). Fundamentos de Transferencia de Calor y Materia 5ª Ed. Pearson Eduación
    Sáiz Jabardo, J.M., Arce Ceinos, A., Lamas Galdo, M.I. (2012). Transferencia de Calor. Universidade da Coruña
    Mills, A.F. (1996). Transferencia de Calor, 1ª Ed. Irwin

    Apuntes da asignatura

    *
    Complementária


    Recomendaciones
    Asignaturas que se recomienda haber cursado previamente
    TERMODINÁMICA/730G03014

    Asignaturas que se recomienda cursar simultáneamente
    MECÁNICA DE FLUIDOS/730G03018

    Asignaturas que continúan el temario
    Trabajo Fin de Grado/730G03068

    Otros comentarios


    (*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías