Identifying Data 2018/19
Subject (*) Theory of Vibration Code 730G03040
Study programme
Grao en Enxeñaría Mecánica
Descriptors Cycle Period Year Type Credits
Graduate 1st four-month period
Fourth Optional 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Naval e Industrial
Coordinador
Gutierrez Fernandez, Ruth Maria
E-mail
ruth.gutierrez@udc.es
Lecturers
Gutierrez Fernandez, Ruth Maria
E-mail
ruth.gutierrez@udc.es
Web http://https://sites.google.com/site/structuralanalysislab/home
General description Esta materia persegue a adquisición de competencias específicas para analizar o comportamento de estruturas e elementos mecánicos sometidos a vibración e para deseñar estruturas e elementos mecánicos baixo cargas dinámicas

Study programme competencies
Code Study programme competences
A1 Capacidade para a resolución dos problemas matemáticos que poidan formularse na enxeñaría. Aptitude para aplicar os coñecementos sobre: álxebra lineal; xeometría; xeometría diferencial; cálculo diferencial e integral; ecuacións diferenciais e en derivadas parciais; métodos numéricos; algorítmica numérica; estatística e optimización.
A2 Comprensión e dominio dos conceptos básicos sobre as leis xerais da mecánica, termodinámica, campos e ondas e electromagnetismo e a súa aplicación para a resolución de problemas propios da enxeñaría.
A13 Coñecemento dos principios de teoría de máquinas e mecanismos.
A23 Coñecementos e capacidades para aplicar os fundamentos da elasticidade e resistencia de materiais ao comportamento de sólidos reais.
B2 Que os estudantes saiban aplicar os seus coñecementos ao seu traballo ou vocación dunha forma profesional e posúan as competencias que adoitan demostrarse por medio da elaboración e defensa de argumentos e a resolución de problemas dentro da súa área de estudo
B3 Que os estudantes teñan a capacidade de reunir e interpretar datos relevantes (normalmente dentro da súa área de estudo) para emitiren xuízos que inclúan unha reflexión sobre temas relevantes de índole social, científica ou ética
B5 Que os estudantes desenvolvan aquelas habilidades de aprendizaxe necesarias para emprenderen estudos posteriores cun alto grao de autonomía
B6 Ser capaz de concibir, deseñar ou poñer en práctica e adoptar un proceso substancial de investigación con rigor científico para resolver calquera problema formulado, así como de comunicar as súas conclusións –e os coñecementos e razóns últimas que as sustentan– a un público tanto especializados como leigo dun xeito claro e sen ambigüidades
B7 Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas
B9 Adquirir unha formación metodolóxica que garanta o desenvolvemento de proxectos de investigación (de carácter cuantitativo e/ou cualitativo) cunha finalidade estratéxica e que contribúan a situarnos na vangarda do coñecemento
C1 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C2 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C3 Entender a importancia da cultura emprendedora e coñecer os medios ao alcance das persoas emprendedoras.
C4 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C5 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C6 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Learning outcomes Study programme competences
Handle the principles of vibration theory to analyze dynamic systems: response under free and forced vibration to single degrees of freedom SDOF and multiple degrees of freedom MDOF systems, harmonic load, and general type excitations. A1
A2
A13
A23
B2
B5
B9
C1
C3
C5
Knowledge about the standards which govern the design and analysis of elastic solids and structures under dynamic loads. Knowledge and application of the main techniques of mathematical modeling for dynamic analysis. A1
A2
A13
A23
B2
B3
B6
B9
C2
C4
C6
Apply properly theoretical concepts not laboratory. Understand and apply some technical computing solution: numerical methods for the analysis of vibrating systems. A1
B3
B6
B9
C2
C4
C6
Solve exercises and problems of vibrations in a complete and reasoned way through current tools: use of a commercial finite element program. A1
A2
A13
A23
B3
B6
B7
C1
C2
C3
C4
C5
C6
Use a rigorous language in the engineering structural dynamics in order to show and to explain information and results B2
B3
B5
B6
B7
B9
C1
C2
C3
C4
C5
C6

Contents
Topic Sub-topic
Chapter 0. The following topics develop the contents set up in the verification memory. Dynamic equations. Modelling. Vibration of systems of 1 and N degrees of freedom. Buffer. Vibration of continuous systems
Chapter 1. Introduction to structural dynamics:dynamic equations and modeling. Basic concepts. Classification of vibrations. Modelling systems: stiffness, inertia, and damping elements. Mathematical models of Single Degree Of Freedom (SDOF) systems. Application of Newton's laws. Application of the principle of virtual displacements. Hamilton principle. Application of the Lagrange equations.
Chapter 2. Free vibration of SDOF system. Damping. Free vibration of undamped SDOF systems. Free vibration of viscous damped SDOF systems. Other types of damping.
Chapter 3. Response of SDOF to harmonic excitation. Damping. Response of undamped SDOF to harmonic excitation. Response of viscous damped SDOF to harmonic excitation. Complex frequency response. Vibration isolation. Force Transmissibility. Base motion. Response of SDOF due to unbalance in rotating machines.
Chapter 4. Analytical methods of solution. Response of SDOF to a general dynamic excitation Response of SDOF to special forms of excitation. Ideal step input, rectangular pulse and ramp loadings. Short-duration impulse. Unit impulse response. Classification of methods. Duhamel Integral Method.
Chapter 5. Numerical methods of solution. Response of SDOF to a general excitation. Numerical evaluation of the integral of convolution. Method of linear forces. Step by step methods. The average acceleration method. Methods of Newmark family.
Chapter 6. Continuous systems. Mathematical models of Multiple Degrees Of Freedom (MDOF) systems Continuous systems. Discrete systems: application of Newton's laws, application of the Lagrange equations. Equations of motion.
Chapter 7. Free vibration response of MDOF systems Natural frequencies and modes of vibration of MDOF systems. Free vibration response of MDOF systems. Rigid body modes of vibration. Some properties of the natural frequencies and natural modes. Scaling or normalizing. Orthogonality. Expansion theorem. Free vibration response of MDOF systems. Mode-superposition method.
Chapter 8. Forced vibration response of MDOF systems. Mode-superposition method response of undamped MDOF systems. Truncation. Damped MDOF systems. Orthogonal, modal, classic or proportional damping. Rayleigh damping. Non-proportional damping.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Laboratory practice A1 A2 A13 A23 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 10 20 30
Seminar A13 A23 B2 B3 B5 B6 B7 B9 C2 C3 C4 C6 8 16 24
Supervised projects A1 A2 A13 A23 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 14 38.5 52.5
Guest lecture / keynote speech A2 A13 A23 B2 B3 B5 B6 B7 B9 C1 C2 C4 C6 10 30 40
 
Personalized attention 3.5 0 3.5
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Laboratory practice Methodology that allows the realization of activities of practical character, with computer, such as modelization, analysis and dynamic simulation of mechanical and structural elements.
Seminar Technique of work in group to resolve practical cases, by means of exhibition, discussion, participation and calculation. A calculator is employed
Supervised projects Methodology designed to promote autonomous learning of students, solving a problem that involves the contents of the course and involves specific skills, under teacher supervision.
Guest lecture / keynote speech Oral lecture supplemented with the use of audiovisual means, aiming transmit knowledge and facilitate the learning within the scope of vibration analysis

Personalized attention
Methodologies
Seminar
Laboratory practice
Supervised projects
Description
Guidance and revision about specific problems posed at the development of the different activities proposed in the course. Revision and help when making supervised projects.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice A1 A2 A13 A23 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 Students must systematically attend practices. The proposed activities have to be done along the practical sessions, in order to be revised and evaluated by the teacher. The practices that aren’t developed during the practical classes, and periodically revised by the teacher will not be considered in the qualification.

The evaluation process of the laboratory lessons includes a two hour practice session, where the student solves with the computer the problems proposed by the teacher, individually.
30
Supervised projects A1 A2 A13 A23 B2 B3 B5 B6 B7 B9 C1 C2 C3 C4 C5 C6 The projects include the theoretical and practical contents of the course. They are to be done individually. The projects will be developed during the practical sessions along the course and completed at home on the student personal work hours. The tasks will be followed and revised during the practical lessons. If the projects aren’t matured during the practical classes, nor periodically revised by the teacher, will not be considered in the qualification. 70
 
Assessment comments

Students, whose presence throughout the
semester where insufficient to track their work, by academic waiver or other
causes, must also develop and present practices and tutored work for their
evaluation. The follow-up of this work shall be carried out in tutoring
sessions. In this case, the process of evaluation may include in addition to
the presentation of practices and tutored work, a practice session,
individually or in group, in which the student addresses manually or with the
computer the problems raised by the teacher.

 

For the second chance you can present or improve
practices and tutored work. The tracking is done in tutorial sessions. The
assessment is done through presentation of practices and tutored work pending
and/or improved. The process of evaluation may include, in addition to the
presentation of practices and tutored work, a practical session, individually
or in group, in which the student addresses manually or with the computer the
problems posed by the teacher.


Sources of information
Basic Dassault Systèmes Simulia Corp. (2011). Abaqus Analysis User’s Manual. Providence, RI, USA. (1998)
R. R. Craig (1981). Structural Dynamics. John Wiley and Sons, Inc
R. Gutiérrez, E. Bayo, A. Loureiro y L.E. Romera (2009). Teoría de Estructuras III. Servicio de publicaciones de la Universidade da Coruña
S.S. Rao (2012). Vibraciones Mecánicas.Quinta Edición. Pearson Education, México.

Complementary


Recommendations
Subjects that it is recommended to have taken before
Diferential Equations/730G03011
Strength of Materials/730G03013
Theory of Machines/730G03019
Theory of Structures /730G03021
Strength of Materials II/730G03027
Mechanics/730G03026

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

To help achieve a sustained immediate environment and meet the objective of the action number 5: "Teaching and healthy and sustainable environmental and social research" of the "Plan of action Green Campus Ferrol":

 

Documentary work presented in this matter:

* Should be requested in virtual format or computer support

* Will take place through Moodle, in digital format without having to print them

* Should be required on paper:

   -Not be  they used plastic

   -There will be double-side printing.                 

   -Will use recycled paper.                 

   -Prevent printing drafts.

 

You should make a sustainable use of resources and the prevention of negative impacts on the natural environment

 



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.