Datos Identificativos 2019/20
Asignatura (*) MÉTODOS NUMÉRICOS Código 730G04054
Titulación
Grao en enxeñaría en Tecnoloxías Industriais
Descriptores Ciclo Periodo Curso Tipo Créditos
Grado 1º cuatrimestre
Cuarto Obligatoria 6
Idioma
Castellano
Modalidad docente Presencial
Prerrequisitos
Departamento Matemáticas
Coordinador/a
Cardenal Carro, Jesús
Correo electrónico
jesus.cardenal@udc.es
Profesorado
Cardenal Carro, Jesús
Correo electrónico
jesus.cardenal@udc.es
Web
Descripción general

Competencias del título
Código Competencias del título
B2 CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B5 CB5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
B6 B3 Ser capaz de concebir, diseñar o poner en práctica y adoptar un proceso sustancial de investigación con rigor científico para resolver cualquier problema planteado, así como de que comuniquen sus conclusiones -y los conocimientos y razones últimas que la sustentan- públicos especializados y no especializados de una manera clara y sin ambigüedades.
B7 B5 Ser capaz de realizar un análisis crítico, evaluación y síntesis de ideas nuevas y complejas.
C1 C3 Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su profesión y para el aprendizaje a lo largo de su vida.
C4 C6 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse.
C6 C8 Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la sociedad.

Resultados de aprendizaje
Resultados de aprendizaje Competencias del título
Conocer la teoría la práctica de las técnicas numéricas básicas para la resolución de problemas en ingeniería B2
B5
B6
B7
C1
C4
C6

Contenidos
Tema Subtema
Errores en el cálculo numérico Definición de Métodos Numéricos. Evolución histórica de la resolución de problemas en Ingeniería. Fundamentos Matemáticos.
Modelos Matemáticos. Fórmulas de Recurrencia y Aproximaciones Sucesivas. Etapas en el proceso de resolución de un problema. Algoritmos Numéricos. Estabilidad y Convergencia de un Método Numérico. Cifras significativas. Exactitud y precisión. Definición de error. Fuentes de error. Errores inherentes. Errores de redondeo. Tratamiento de los números en el computador: representación binaria. Errores de truncamiento. Condición numérica. Error numérico total. Propagación de error. Estabilidad y convergencia.
introducción a MATLAB
Ecuaciones y sistemas de ecuaciones Algebraicas. Métodos Cerrados: Métodos Gráficos. Método de la Bisección. Método de la Falsa Posición. Determinación del punto inicial y del incremento en la búsqueda. Métodos Abiertos: Método de la Iteración de Punto Fijo o punto simple. Método de Newton-Raphson. Estudio de la Convergencia. Método de la Secante. Análisis del error y razón de convergencia: ecuación de la catenaria. Aceleración de la convergencia: método Delta2 de Aitken, método de Steffensen. Ceros de polinomios: método de Honer para a evaluación de un polinomio, método de Müller. Sistemas de Ecuaciones no lineales: Iteración de Punto Fijo. Iteración de Seidel. Método de Newton. Método de Broyden. Aplicacioness.
Sistemas de ecuaciones lineales. Fundamentos de Álgebra sobre la existencia de solución de un sistema de Ecuaciones Lineales. Normas de vectores. Propiedades. Normas de matrices. Propiedades. Norma natural infinito de una matriz. Métodos para bajo número de ecuaciones. Triangularización de Gauss. Recuento de operaciones. Inconvenientes de los métodos de eliminación. Técnicas para mejorar la solución: Escalado, Pivotamiento Parcial y Total. Inversión de matrices. El algoritmo de la triangularización de Gauss con y sin pivotamiento. Descomposición LU general. Triangularización de Gauss y descomposición LU. Factorización de Crout. Factorización de Cholesky. Métodos Iterativos: Método de Jacobi. Método de Gauss-Seidel. Errores en sistemas de ecuaciones: condición numérica.
Valores y vectores propios. Nociones generales: el problema de valores y vectores propios ordinario y generalizado. Método de la iteración directa para el cálculo del mayor valor propio de una matriz. Iteración inversa: cálculo del menor valor propio en valor absoluto. Iteración inversa con desplazamiento. Cálculo de todos los valores propios de una matriz: cálculo de los coeficientes del polinomio característico de una matriz: métodos de Krylov y Le Verrier. Cálculo de los valores propios de una matriz simétrica: método de Jacobi, tridiagonalización de Givens y Householder, descomposición QR. Tratamiento de matrices no simétricas: métodos de Lanczos y tipo Jacobi. Aplicaciones.
Interpolación y aproximación de funciones. Tipos de problemas y aplicaciones. Interpolación: polinomio de Lagrange. Existencia y unicidad. Métodos para la evaluación del polinomio: cálculo directo de los coeficientes, método de los polinomios básicos y método de las diferencias divididas. Estimación del error en la interpolación. Osculación: polinomio de Hermite. Ajuste de mínimos cuadrados: determinación de la ecuación de una recta, un polinomio de orden m y de una función cualquiera. Splines cúbicos.
Diferenciación e integración numérica. Introducción: conceptos básicos. Fórmulas de integración de Newton-Cotes: regla del trapecio, regla de Simpson 1/3 y regla de Simpson 3/8. Integración de funciones: integración de Romberg, extrapolación de Richardson y fórmulas de Gauss-Legendre. Diferenciación numérica: aproximaciones de primer orden y órdenes superiores. Extrapolación de Richardson.
Integración de ecuaciones diferenciales ordinarias. Problema de valor inicial: Métodos de una etapa: Euler Adelante, Euler Atrás, Heun, fórmulas de Runge-Kutta. Métodos de etapas múltiples: Adams-Bashforth y Adams-Moulton. Estudio de la estabilidad en el caso y=exp(x). Estimación del error y métodos adaptativos. Aplicaciones.
Métodos de diferencias para la integración numérica de ecuaciones diferenciales parciales: Problemas físicos que responden a un modelo definido por ecuaciones diferenciales en derivadas parciales. Ecuaciones diferenciales parciales elípticas. Ecuaciones diferenciales parciales parabólicas. Ecuaciones diferenciales parciales hiperbólicas. Solución de casos prácticos con MATLAB.

Planificación
Metodologías / pruebas Competéncias Horas presenciales Horas no presenciales / trabajo autónomo Horas totales
Prueba mixta B2 B6 B7 3 6 9
Solución de problemas B2 B5 B6 B7 C1 C4 C6 15 30 45
Sesión magistral B7 C1 C4 C6 38 38 76
Trabajos tutelados B7 C1 C4 4 15 19
 
Atención personalizada 1 0 1
 
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

Metodologías
Metodologías Descripción
Prueba mixta Examen final de la materia. Consta de dos partes: una teórica y otra práctica.
Solución de problemas Propuestas de solución de los problemas que surjan en las clases de teoría. También se incluyen en este apartado los controles que se hagan para verificar la preparación de las clases Las entregas de soluciones se realizarán a través de la plataforma Moodle.
Sesión magistral Clases de teoría de análisis numérico. Tiene que estar precedidas por la lectura atenta de los contenidos que indique el profesor.
Trabajos tutelados Solución de varios problemas relacionados con el numérico, presentación y defensa individual o por grupos.

Atención personalizada
Metodologías
Solución de problemas
Trabajos tutelados
Descripción
Tanto en las sesiones de "solución de problemas" como en las "trabajos tutelados" se dedicará un tiempo a la atención personalizada, individual o de los grupos que se hayan compuesto.
Los alumnos con dispensa académica que quieran participar a través de la facultad virtual en estas actividades, podrán contrastar los resultados obtenidos en sesiones de tutoría.

Evaluación
Metodologías Competéncias Descripción Calificación
Solución de problemas B2 B5 B6 B7 C1 C4 C6 La metodología de dinámica de grupos aplicada a esta parte de la asignatura permitirá la evaluación de trabajo de preparación de la sesión por parte del alumno, así como el que se derive de su participación en los debates que se susciten en la resolución del caso.
Para los alumnos con dispensa académica esta parte de la calificación se agregará al examen final.
10
Prueba mixta B2 B6 B7 Representa el 60% de la nota y ésta, a su vez se compone de un 40% del examen de teoría y un 60% por la parte de práctica.
En el caso de los alumnos con dispensa académica que no hayan sido evaluados en los apartados anteriores, el examen final representa el 100% de la nota, repartida en 40% teoría, 60% práctica.
60
Trabajos tutelados B7 C1 C4 Se evaluará la corrección de la solución propuesta para los trabajos en términos de adecuación, eficiencia en el cálculo, organización de la información y presentación final.
Para los alumnos con dispensa académica esta parte de la nota se agregará a la proba mixta.
30
 
Observaciones evaluación
Tal como se explica en los apartados correspondientes, los alumnos con dispensa académica serán evaluados exclusivamente mediante el examen final de la materia tanto en la convocatoria ordinaria como, de ser el caso, en la segunda oportunidad.

Fuentes de información
Básica Burden,R.L. y Faires, J.D. (2002). Análisis Numérico. Thomson Learning
Kincaid,D. y Cheney, W. (1994). Análisis Numérico. Las Matemáticas del CálculoCientífico. Addison-Wesley Iberoamericana
García de Jalón, J, Rodríguez,J.I. y Brazález, A. (2001). Aprenda MATLAB 6.1 como si estuviera en primero. http://mat21.etsii.upm.es/ayudainf/aprendainf/Matlab61/matlab61pro.pdf
Sigmon,K. (1994). MATLAB Primer. 4th Edition.. CRC Press
Chapra,S.C. y Canale, R. P. (2007). Métodos Numéricos para Ingenieros. McGraw-Hill Interamericana

 

Complementária

Butcher, J., Numerical Methods for Ordinary Differential Equations, 2nd Edition, John Wiley and Sons, 2003
Champion, E.R. Jr., Numerical Methods for Engineering Applications, Marcel Dekker, Inc. New York, 1993
Dautray, R. y Lions, J-L., Mathematical Analysis and Numerical Methods for Science and Technology (Vols. 1-6), Springer-Verlag, Berlin, 1991-1993.
Dormand, J.R., Numerical Methods for Differential Equations. A computational Approach, CRC Press, 1996.
Gander, W. y Hrebícek, J., Solving Problems in Scientific Computing Using Maple and MATLAB (2nd Edition), Springer-Verlag, Berlín, 1995.
Ganza, V.G. y Vorozhtsov, E.V., Numerical Solution for Partial Diferential Equations. Problem Solving Using Mathematica, CRC Press, 1996.
García Merayo, F. y Nevot, A., Análisis Numérico, Paraninfo, Madrid, 1992.
Geddes, K.O., Czapor, S.C. y Labahn, G., Algorithms for Computer Algebra, Kluwer Academic Publishers, Boston, 1992.
Gill, Ph.E., Murray, W. y Wright, M., Numerical Linear Algebra and Optimization (Vol. 1), Addison-Wesley, Redwood City (California), 1991.
Giordano, F.R. y Weir, M.D., Differential Equations. A Modeling Approach. Addison-Wesley, Reading (Massachusetts), 1994.
Haug, E. y Choi, K., Methods of Engineering Mathematics, Prentice Hall, Englewood Cliffs (New Jersey), 1993.
Heck, A., Introduction to Maple, Springer-Verlag, New York, 1993.
Johnson, E., Linear Algebra with Maple V, Brooks/Cole, Belmont (California), 1993.
Kahaner, D., Moler, C. y Nash, S., Numerical Methods and Software, Prentice-Hall, Englewood Cliffs (New Jersey), 1989.
Lindfield, G. y Penny, J., Numerical Methods Using MATLAB, Ellis Horwood, Hemel Hempstead (Hertfordshire, Gran Bretaña), 1995.
Mathews, J.H., Numerical Methods for Mathematics, Science and Engineering. 2nd Ed., Prentice Hall, Englewood Cliffs (New Jersey), 1992.
Mathews, J.H. y Fink, K.D., Métodos Numéricos con MATLAB. 3ª Edición. Prentice Hall, 2000
MATLAB Reference Guide, The Math Works, Inc., Natick (Massachusetts), 1992.
MATLAB User’s Guide, The Math Works, Inc., Natick (Massachusetts), 1992.
Naiman, A.E., NA Slides, Ed. por el Autor, Jerusalén, 1996. Las transparencias, en formato PostScript están disponibles en http://hobbes.jct.ac.il/~naiman.
Noble, B. y Daniel, J.W., Applied Linear Algebra (3th Edition), Prentice-Hall International, Englewood Cliffs, 1988.
Ortega, J.M., Numerical Analysis. A Second Course, Academic Press, New York, 1972.
Press, W.H., Teukolsky, S.A., Vetterling, W.T. y Flannery, B.P., Numerical Recipes in C. 2nd Edition, Cambridge University Press, Cambridge, 1992.
Ralston, A. y Rabinowitz, P., A First Course in Numerical Analysis. 2nd Edition, McGraw-Hill, New York, 1978.
Scheid, F. y Di Costanzo, R. E. Métodos Numéricos. 2ª Edición, McGraw Hill Interamericana, Mexico, 1993.
Stewart, G.W., Afternotes on Numerical Analysis, SIAM Press, 1996.
Stoer, J. y Bulirsch, R., Introduction to Numerical Analysis. 2nd Edition, Springer-Verlag, New York, 1993.
Strang, G., Álgebra Lineal y sus Aplicaciones, Addison-Wesley Iberoamericana, Wilmington, 1986.
Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley (Massachusetts), 1986.
Strang, G., Introduction to Linear Algebra, 3th Edition, Wellesley-Cambridge Press, Wellesley (Massachusetts), 2003.
Turner, P. Numerical Analysis, The Macmillan Press Ltd., London, 1994.
Wilson, H.B. y Turkotte, L.H., Advanced Mathematics and Mechanics Applications Using MATLAB, CRC Press, Boca Ratón (Florida), 1994.
Young, D.M. y Gregory, R.T., A Survey of Numerical Mathematics (Vols. I and II), Addison-Wesley, Reading (Massachusetts), 1972, 1973.


Recomendaciones
Asignaturas que se recomienda haber cursado previamente
CÁLCULO/730G04001
INFORMÁTICA/730G04004
ALGEBRA/730G04006
ECUACIONES DIFERENCIALES/730G04011

Asignaturas que se recomienda cursar simultáneamente

Asignaturas que continúan el temario

Otros comentarios

Es necesario asistir a clase con un ordenador portátil.

Para ayudar a conseguir un entorno inmediato sostenido y cumplir con el objetivo de la acción número 5: “Docencia e investigación saludable y sustentable ambiental y social” del "Plan de Acción Green Campus Ferrol", la entrega de los trabajos documentales que se realicen en esta materia:

  • Se solicitarán en formato virtual y/o soporte informático,
  • Se realizará a través de Moodle, en formato digital sin necesidad de imprimirlos,
  • En caso de ser necesario realizarlos en papel:
    • No se emplearán plásticos
    • Se realizarán impresiones a doble cara.
    • Se empleará papel reciclado.
    • Se evitará la impresión de borradores.
  • Se debe de hacer un uso sostenible de los recursos y la prevención de impactos negativos sobre el medio natural


(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías