Identifying Data 2023/24
Subject (*) Advanced manufacturing techniques Code 730G04075
Study programme
Grao en Enxeñaría en Tecnoloxías Industriais
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Fourth Optional 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Naval e Industrial
Coordinador
Nicolas Costa, Gines
E-mail
gines.nicolas@udc.es
Lecturers
Nicolas Costa, Gines
E-mail
gines.nicolas@udc.es
Web
General description O obxectivo desta materia é facer unha breve introdución aos fundamentos da tecnoloxía láser e as súas principais aplicacións na industria, incidindo especialmente nas aplicacións dispoñibles no noso laboratorio.
A orientación da docencia ten un alto contido práctico e de inicio á investigación que se desenvolve mediante un traballo tutelado.

Study programme competencies
Code Study programme competences
B5 CB5 Que os estudantes desenvolvan aquelas habilidades de aprendizaxe necesarias para emprenderen estudos posteriores cun alto grao de autonomía
B7 B5 Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas
B9 B8 Adquirir unha formación metodolóxica que garanta o desenvolvemento de proxectos de investigación (de carácter cuantitativo e/ou cualitativo) cunha finalidade estratéxica e que contribúan a situarnos na vangarda do coñecemento

Learning aims
Learning outcomes Study programme competences
Knowledge of the fundamentals and technological aspects of new fabrication processes Knowledge of the laser Analysis, critical evaluation and synthesis of the mentioned technologies B5
B7
B9

Contents
Topic Sub-topic
Manufacturing processes with high energy density beams Laser technology (fundamentals, systems, applications, security)
Materials processing with other techniques
Additive manufacturing processes Laser cladding
3D printing
Micromanufacturing Laser ablation
X-ray lithography
Focused ion beam
Monitoring techniques and process control Review of the different techniques of interferometry, holography, speckle and scattering
Applications to the measurements of displacements, form defects, superficial characterization and velocimetry
Analytical and characterization techniques based on laser spectroscopy: laser induced fluorescence, laser induced plasma spectroscopy

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech B5 B7 B9 21 42 63
Laboratory practice B5 B7 14 33 47
Supervised projects B5 B7 B9 7 30 37
 
Personalized attention 3 0 3
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Theoretical lessons
Laboratory practice Session of laboratory practices of each of the thematic blocks
Supervised projects Realization of a bibliographic, theoretical, numerical and/or practical work

Personalized attention
Methodologies
Supervised projects
Guest lecture / keynote speech
Laboratory practice
Description
Doubts resolution of the theory and practical works.

Assessment
Methodologies Competencies Description Qualification
Supervised projects B5 B7 B9 A memory of work will be presented and defended in front of professors and students of the course. 100
 
Assessment comments

It is required to attend 75% of the lectures and all the laboratory practices.

Students with
recognition of part-time dedication DO NOT have an academic exemption of
attendance exemption for Laboratory Practices, although they will be given
facilities regarding the dates of completion prior communication. The criteria
and evaluation activities for this student will be the same as for the rest of
the students.

The evaluation criteria in the 2nd opportunity and in the forward one are the same as those in
the 1st opportunity.


Sources of information
Basic J. Brown (1998). Advanced machining technology Handbook. New York: McGraw-Hill
P. Molera (1989). Electromecanizado. Electroerosión y mecanizado electroquímico. Barcelona: Marcombo
T. Yoshizawa (ed) (2009). Handbook of optical metrology : principles and applications. CRC Press (Boca Raton)
W. M. Steen, J. Mazumder (2010). Laser material processing. Springer
L. R. Migliore (1996). Laser materials processing. Marcel Dekker
W. Demtröder (1996). Laser spectroscopy basic concepts and instrumentation. Berlin: Springer
J. P. Davim (ed) (2008). Machining-Fundamentals and recent advances. London: Springer-Verlag
J. P. Davim, M. J. Jackson (ed) (2009). Nano and micromachining. John Wiley & Sons

Complementary D.A. Cremers y L.J. Radziemski (2006). Handbook of Laser-induced Breakdown Spectroscopy. Chichester: Wiley
H. H. Telle (2007). Laser chemistry: spectroscopy, dynamics and applications . West Sussex, John Wiley & Sons
P. Hering, J. P. Lay, S. Stry (2004). Laser in environmental and life sciences: modern analytical methods. Springer
P. Schaaf (ed) (2010). Laser processing of materials. Springer
J.P. Singh y S.N. Thakur (2006). Laser-induced Breakdown Spectroscopy. Amsterdam: Elsevier Science BV
M. Lackner (ed) (2008). Lasers in chemistry. Wiley-VCH
J. Dowden (ed.) (2009). The theory of laser materials processing. Springer


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

To help achieve a sustained immediate environment and meet the goal of action number 5: "Healthy and environmental and social teaching and research" of the "Green Campus Ferrol Action Plan", the following recommendations are made: -Make a sustainable use of resources and the prevention of negative impacts on the natural environment -The delivery of the documentary works that are made in this matter: • It will be done through Moodle, in digital format without the need to print them • If it is necessary to make them on paper: - Plastics will not be used - Double-sided prints will be made. - Recycled paper will be used. - The printing of drafts will be avoided. 

In general, sustainable use of resources will be made and negative impacts on the natural environment will be avoided as far as possible. In addition, the importance of ethical principles related to sustainability values in personal and professional behaviors will be taken into account.

As stated in the different regulations applicable to university teaching, the gender perspective will be incorporated in this area (non-sexist language will be used, bibliography of authors of both sexes will be used, the intervention in class of students will be encouraged ...). Work will be done to identify and modify prejudices and sexist attitudes, and the environment will be influenced to modify them and promote values of respect and equality. Situations of discrimination based on gender will be detected and actions and measures will be proposed to correct them. The full integration of students who, for physical, sensory, mental or sociocultural reasons, experience difficulties with suitable, equal and profitable access to university life will be facilitated.




(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.