Identifying Data 2019/20
Subject (*) Polymers in Sustainable Energy Development Code 770523015
Study programme
Mestrado Universitario en Eficiencia e Aproveitamento Enerxético
Descriptors Cycle Period Year Type Credits
Official Master's Degree 2nd four-month period
First Optional 3
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Física e Ciencias da Terra
Química
Coordinador
Abad López, María José
E-mail
maria.jose.abad@udc.es
Lecturers
Abad López, María José
Ares Pernas, Ana Isabel
González Rodríguez, María Victoria
E-mail
maria.jose.abad@udc.es
ana.ares@udc.es
victoria.gonzalez.rodriguez@udc.es
Web
General description Achegar coñecementos básicos e discutir o papel que poden desempeñar os polímeros condutores como materiais activos en dispositivos capaces de producir, almacenar ou aforrar enerxía limpa.

Study programme competencies
Code Study programme competences
A12 Capacidad para la toma de decisiones en un entorno tecnológico donde los materiales se utilicen en aplicaciones de eficiencia
B1 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
B3 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
B9 Extraer, interpretar y procesar información, procedente de diferentes fuentes, para su empleo en el estudio y análisis.
B14 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la eficiencia
B16 Valorar la aplicación de tecnologías emergentes en el ámbito de la energía y el medio ambiente.
C1 Adquirir la terminología y nomenclatura científico-técnica para exponer argumentos y fundamentar conclusiones.
C4 Desarrollar el pensamiento crítico

Learning aims
Learning outcomes Study programme competences
Capacity for decision -making in a technological environment where materials are used in applications efficiency AJ12
That the students can apply their knowledge and their ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary ) contexts related to their field of study . BC1
Knowledge and understanding that provide a basis or opportunity for originality in developing and / or applying ideas , often in a research context . BC3
Extract , interpret and process information from different sources , for use in the study and analysis . BC9
Apply knowledge of science and advanced technologies to professional practice or research efficiency BC14
Assess the application of emerging technologies in the field of energy and the environment . BC16
Acquire scientific and technical terminology and nomenclature to present arguments and justify conclusions. CC1
Develop critical thinking CC4

Contents
Topic Sub-topic
1. Introduction to conductive polymers 1.1 . Polymers and environment
1.2 . Intrinsically conducting polymers
1.3 . Conducting composites
2. Polymers in harvesting energy 2.1 . Harvesting energy concept
2.2 . Polymers in thermoelectricity
2.3 . Polymers in piezoelectricity
3. Conducting polymers in light emitting diodes and solar cells 3.1. Basis
3.2. Devices
3.3. Applications
4. Conducting polymers in electrochromic devices 4.1. Basis
4.2. Devices
4.3. Applications
5. Conducting polymers in batteries 5.1. Basis
5.2. Devices
5.3. Applications

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech B3 B14 C1 C4 9 0 9
Supervised projects A12 B3 B1 B9 B16 C1 C4 1 51 52
Laboratory practice B3 B1 B9 C1 C4 12 1 13
 
Personalized attention 1 0 1
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Oral presentation supported by audiovisual media with the inclusion of some questions for students, to provide knowledge and to facilitate learning.
Supervised projects Methodology is designed to promote autonomous learning of students in different environments (academic or more professional environment) under the guidance of a teacher. It refers mainly to learning "how to do things." In this option, students must assume the responsibility for their own learning.
Laboratory practice This methodology allows that students learn effectively doing practical activities, such as demonstrations, exercises, lab work and researches

Personalized attention
Methodologies
Laboratory practice
Supervised projects
Description
Each student must perform autonomously a work. The teacher will guide them by individual tutoring.
The students will do three sessions of lab work where they will work concepts related to the energy efficiency in conducting polymers.

Assessment
Methodologies Competencies Description Qualification
Laboratory practice B3 B1 B9 C1 C4 The student will perform three laboratory practices related to energy efficiency of conductive polymers .The skills acquired in the laboratory and the report submitted will be evaluated . 30
Supervised projects A12 B3 B1 B9 B16 C1 C4 Students will do individual work on a topic related to conductive polymers to be delivered and presented to other students . Both will be evaluated. 70
 
Assessment comments

Students who accumulate more than 20% of unexcused absences are excluded from the process of continuous evaluation , so that evaluation does not correspond to the table above. For these students the evaluation will be conducted by an objective test with different types of questions (multiple, management , short answer , discrimination , completing and / or association ) and a working case study where it poses students a real situation of professional life . The rating is 50% objective and 50% test case study .


Sources of information
Basic Yasuhiko Shirota and Hiroshi Kageyama (). Charge Carrier Transporting Molecular Materials and Their Applications in Devices. Chem. Rev. 2007, 107, 953-1010
Pierre M. Beaujuge and John R. Reynolds (). Color Control in ?-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev. 2010, 110, 268–320
Petr Novák; Klaus Müller; K. S. V. Santhanam and Otto Haas (). Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207-281
K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo (). Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chem. Rev. 2007, 107, 1233-1271
Javier Padilla Martínez; Rafael Garcia Valverde; Antonio Jesús Fernández Romero y Antonio Urbina Yer (). Polímeros conductores. Su papel en un desarrollo energético sostenible. Editorial Reverté
Sambhu Bhadraa; Dipak Khastgir; Nikhil K. Singhaa and Joong Hee Lee (). Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 34 (2009) 783–810
Yong Dua, Shirley Z. Shenb, Kefeng Caia, Philip S. Casey (). Research progress on polymer–inorganic thermoelectric nanocomposite materials. Progress in Polymer Science 37 (2012) 820– 841
Alan J. Heeger (). Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. Angew. Chem. Int. Ed. 2001, 40, 2591 - 2611
Hideki Shirakawa (). The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers. Angew. Chem. Int. Ed. 2001, 40, 2574 - 2580
Olga Bubnova and Xavier Crispin (). Towards polymer-based organic thermoelectric generators. Energy & Environmental Science 2012, 5, 9345-9362
Alan G. MacDiarmid (). ªSynthetic Metalsº: A Novel Role for Organic Polymers. Angew. Chem. Int. Ed. 2001, 40, 2581 - 2590

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

Recommendations Sustainability Environment, Person and Gender Equality:

1. The delivery of the works (supervised work / reports of practices) that are carried out in this matter will be done in the following way:
1.1. It will be delivered in virtual format and / or computer support

1.2. In the case of having to print something on paper, it will be made on recycled and double-sided paper. Drafts will not be printed, only the final version.

2. It must make a sustainable use of resources and the prevention of negative impacts on the natural environment. It will be encouraged that the materials that are discarded in the matter (papers, plastics) are thrown in the respective containers enabled in the streets for such purpose.

3. It will try to convey to students the importance of ethical principles related to the values ??of sustainability so that they apply not only in the classroom, but in personal and professional behaviors.

4. The gender perspective must be incorporated in this subject, so the works delivered by the students and the material prepared by the teacher must use non-sexist language.

5. It will facilitate the full integration of students who for physical, sensory, psychic or sociocultural reasons, experience difficulties to an adequate, equal and profitable access to university life.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.