Identifying Data 2020/21
Subject (*) Energy Use of Regasification of Liquefied Natural Gas Code 770523017
Study programme
Mestrado Universitario en Eficiencia e Aproveitamento Enerxético
Descriptors Cycle Period Year Type Credits
Official Master's Degree 2nd four-month period
First Optional 3
Language
Spanish
Galician
English
Teaching method Face-to-face
Prerequisites
Department Ciencias da Navegación e Enxeñaría Mariña
Enxeñaría Naval e Industrial
Coordinador
Romero Gómez, Manuel
E-mail
m.romero.gomez@udc.es
Lecturers
Romero Gómez, Manuel
E-mail
m.romero.gomez@udc.es
Web http://moodle.udc.es/
General description O gas natural é o combustible fósil con menor impacto ambiental. É o combustible do presente e do futuro para contribuír á redución de emisións contaminantes. O gas natural pasa por diversos procesos desde a súa extracción ata o consumo final por parte dos usuarios. Un destes procesos é o de almacenamento e regasificación do GNL.
Nesta materia estúdase o proceso de regasificación desde o punto de vista termodinámico para establecer estratexias que permitan o aproveitamento da enerxía que se libera neste proceso. Utilizaranse ferramentas de software que permitan optimizar o proceso.
Contingency plan 1. Modificaciones en los contenidos
Non se realizarán cambios

2. Metodoloxías
*Metodoloxías docentes que se mantieñen
Se mantienen todas las metodologías docentes.
Solución de problemas, Trabajos tutelados, Sesión magistral y Prueba objetiva.
La sesión magistral se realizará por Teams en el horario inicialmente establecido y la asistencia computara en la evaluación.

*Metodoloxías docentes que se modifican

3. Mecanismos de atención personalizada al alumnado
Correo electrónico, teléfono, moodle y teams

4. Modificacins en la evaluación
Se mantiene las misma metodologías de evaluación y porcentajes.
*Observaciones de evaluación:

5. Modificaciones de la bibliografía o webgrafía
No se realizan cambios. Estará disponible en moodle.

Study programme competencies
Code Study programme competences
A13 Capacidad para analizar, aplicar y optimizar los sistemas de aprovechamiento energético.
B1 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
B3 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
B6 Buscar y seleccionar alternativas considerando las mejores soluciones posibles.
B7 Desarrollar las capacidades de análisis y síntesis; fomentar la discusión crítica, la defensa de argumentos y la toma de conclusiones.
B9 Extraer, interpretar y procesar información, procedente de diferentes fuentes, para su empleo en el estudio y análisis.
B11 Adquirir nuevos conocimientos y capacidades relacionados con el ámbito profesional del máster.
B13 Aplicar los conocimientos teóricos a la práctica
B14 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la eficiencia
B16 Valorar la aplicación de tecnologías emergentes en el ámbito de la energía y el medio ambiente.
B18 Plantear y resolver problemas, interpretar un conjunto de datos y analizar los resultados obtenidos; en el ámbito de la eficiencia energética y la sostenibilidad.
C2 Fomentar la sensibilidad hacia temas medioambientales.
C3 Aplicar una metodología que fomente el aprendizaje y el trabajo autónomo.

Learning aims
Learning outcomes Study programme competences
Ability to analyze, implement and optimize energy utilization systems. AJ13
That the students can apply their knowledge and their ability to solve problems in new or unknown environments within broader (or multidisciplinary) contexts related to their field of study. BC1
Knowledge and understanding that provides a basis or opportunity to be original in the development and / or implementation of ideas. BC3
Find and select the best alternative considering possible solutions. BC6
Develop the capacities of analysis and synthesis; encourage critical discussion, arguments and making conclusions. BC7
Extract, interpret and process information from different sources, for use in the study and analysis. BC9
Acquire new knowledge and skills related to the professional field of the master. BC11
Apply theoretical knowledge into practice BC13
Apply knowledge of science and advanced technologies to professional practice or research efficiency BC14
Assess the application of emerging technologies in the field of energy and the environment. BC16
Solve problems, interpret a set of data and analyze the results obtained; in the field of energy efficiency and sustainability. BC18
Foster sensitivity to environmental issues. CC2
Apply a methodology that fosters learning and self-employment. CC3

Contents
Topic Sub-topic
1. Introduction to natural gas
1.1 Chain of natural gas
1.2 Uses of natural gas
1.3 Iberian and European gas network
2. Onshore regasification terminals
2.1 Equipment
2.2 LNG regasification process
2.3 regasification terminals: Features
3. Offshore regasification terminals
3.1 Vessels FSRU (Floating Storage and Regasifcation Unit)
3.2 Description of operation
3.3 Equipment
4. Energetic and exergetic analysis LNG regasification process 4.1 Thermodynamic Fundamentals
4.2 Energy and Exergy Analysis
4.3 Recovery of LNG exergy regasification process
4.4 Analysis of power plants with utilization of LNG exergy.
4.5 Case study to solve with the software EES (Engineering Equation Solver).

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Problem solving A13 B1 B6 B13 B14 C3 7 14 21
Supervised projects A13 B1 B6 B7 B9 B13 8 8 16
Objective test B1 B6 B7 B9 B13 B14 B16 2 6 8
Guest lecture / keynote speech B3 B7 B9 B11 B16 B18 C2 15 15 30
 
Personalized attention 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Problem solving Collections of exercises proposed for each issue will be resolved, allowing the application of the most appropriate mathematical models to each case, including management software, application of the most appropriate assumptions, regarding the theoretical contents developed in lectures and relationship with the professional exercise.
Supervised projects Troubleshooting greater demands that the exercises solved in class or issues of particular relevance.
Objective test The degree of acquired knowledge on the subject in question is valued, taking into account both the theoretical part as problems.
Guest lecture / keynote speech The detailed explanation of the contents of the subject will be made. The student will have a copy of the topic in each session master. Class participation is encouraged through comments linking the theoretical content with real-life experiences.

Personalized attention
Methodologies
Supervised projects
Problem solving
Description
The student is guided on those issues that are imparted and special difficulty understanding matter. Channels and contact information will be the Virtual Faculty and individualized tutoring that develop during the week.

Assessment
Methodologies Competencies Description Qualification
Supervised projects A13 B1 B6 B7 B9 B13 Presentation and defense of the work performed. The structure, neatness, content and originality expository will be evaluated. 10
Guest lecture / keynote speech B3 B7 B9 B11 B16 B18 C2 Attendance at the sessions will be counted in the final mark. 10
Problem solving A13 B1 B6 B13 B14 C3 Troubleshooting, if possible, with appropriate software 10
Objective test B1 B6 B7 B9 B13 B14 B16 Assessment of Knowledge and understanding of the basic contents of the subject, considering the student's abilities and skills, strategies and approaches to problem solving.
The degree of development of students and their ability to analyze and solve specific problems will be evaluated, requiring a balanced theoretical and practical training.
70
 
Assessment comments

A final exam for those students who do not participate in the continuous assessment of the subject throughout the course will be proposed. It allows to evaluate and verify the expected results in terms of global content of matter and verify the degree of achievement of the objectives. The overall final exam will consist of a test composed of 2 parts: a) theoretical (50%); b) practice (50%); with independent valuation, which is necessary to obtain a minimum of 3 points in each part purposed.


Sources of information
Basic Michael J. Moran, Howard N. Shapiro (). Fundamentos de Termodinámica Técnica. Reverté
Saeid Mokhatab, John Y. Mark (). Handbook of Liquefied Natural Gas. Elsevier
Saeid Mokhatab, William A. Poe and James G. Speight (). Handbook of Natural Gas Transmission and Processing. Elsevier

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.