Identifying Data 2019/20
Subject (*) Digital Systems I Code 770G01026
Study programme
Grao en Enxeñaría Electrónica Industrial e Automática
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Third Obligatory 6
Language
Spanish
Teaching method Face-to-face
Prerequisites
Department Enxeñaría Industrial
Coordinador
Meizoso López, Maria del Carmen
E-mail
carmen.meizoso@udc.es
Lecturers
Jove Pérez, Esteban
Meizoso López, Maria del Carmen
E-mail
esteban.jove@udc.es
carmen.meizoso@udc.es
Web
General description O obxectivo desta materia é que o alumno coñeza as memorias e os dispositivos lóxicos programables, así como os métodos e ferramentas de deseño de circuítos sobre dispositivos lóxicos programables.

Study programme competencies
Code Study programme competences
A26 Coñecer os fundamentos e aplicacións da electrónica dixital e microprocesadores.
A30 Coñecer e ser capaz de modelar e simular sistemas.
A31 Coñecementos de regulación automática e técnicas de control e a súa aplicación á automatización industrial.
B1 Capacidade de resolver problemas con iniciativa, toma de decisións, creatividade e razoamento crítico.
B2 Capacidade de comunicar e transmitir coñecementos, habilidades e destrezas no campo da enxeñaría industrial.
B3 Capacidade de traballar nun contorno multilingüe e multidisciplinar.
B4 Capacidade de traballar e aprender de forma autónoma e con iniciativa.
B5 Capacidade para empregar as técnicas, habilidades e ferramentas da enxeñaría necesarias para a práctica desta.
B6 Capacidade de usar adecuadamente os recursos de información e aplicar as tecnoloxías da información e as comunicacións na enxeñaría.
B7 Capacidade para traballar de forma colaborativa e de motivar un grupo de traballo.
B11 CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
C2 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C5 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

Learning aims
Learning outcomes Study programme competences
Programa dispositivos lóxicos programables e configurables e utiliza con soltura a suas ferramentas de desarrollo. A26
A30
B1
B3
C2
Coñece a realización electrónica dos circuitos convertidores A/D y D/A e sabe elegir o máis adecuado en cada aplicación. A26
A30
B1
B2
B5
B6
C2
C5
Distingue os tipos de circuitos lóxicos programables e dispositivos de memoria. A26
A30
A31
B1
B5
C2
C5
Coñece as técnicas de conexión de periféricos básicos, deseña o seus circuitos. A26
A30
B2
B4
B7
B11
C2
C5

Contents
Topic Sub-topic
Contidos da memoria de verificación relacionados cos temas da asignatura · Programación básica en VHDL: Temas 1 e 2.
· Deseño con dispositivos electrónicos configurables CPLD e FPGA: Temas 3, 4 e 6.
· Circuitos de memoria. Temas 5, 6 y 7.
· Conversión A/D y D/A. Tema 6 e 9.
· Ferramentas de deseño e desenvolvemento de sistemas lóxicos programables: Temas 4, 6, 8, 9 e 10.
· Transmisión de datos. Temas 8 y 10.


Subject 1. Sequential syncronous systems design Finite state machines. Analysis and synthesis . VHDL description.
Subject 2. Introduction to Programmable Logic Programmable circuits features. Steps of design. Aplications.
Subject 3. PLD CoolRunner II architecture Function Blocks. Macrocells. I/O Blocks. Timming model.
Subject 4. Digital systems design with CPLDs. Synthesis: Examples of macros codes. Synthesis Report. Options. Translate. Fit:Options. Timming report
Secuencial systems design: Clock signals. Synchronous circuits design:counters, control circuits, asynchornous inputs, metaestability. Interface between synchronous systems and other circuits.

Design of complex systems: Method and practical application.
Subject 5. Architecture of the FPGAs of the family Spartan 3 E of Xilinx Logic resources.CLB. Internal memories. Clock Circuits. Multipliers. E/S technologies.
Subject 6. Synchronous design with FPGAs Synchronous design methodology.
Subject 7: Working with files File declaration. Reading and writing files. Open and close files. Package std_logic_textio. Examples.
Tema 8. Diseño de un controlador VGA DA converter for VGA into the Nexys 2. Standard VGA. Controller design.
Subject 8. Design of arithmetic systems with programmable logic Adders. Subtracters. Multipliers. Dividers
Subject 9. Techniques for improving the performance of syncronous systems. Duplicating states. Pipelining.

Planning
Methodologies / tests Competencies Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech A26 21 0 21
Laboratory practice B7 B11 C2 C5 30 0 30
Problem solving A30 A31 B1 B2 B3 B4 B5 B6 0 95 95
Mixed objective/subjective test A26 A30 B1 4 0 4
 
Personalized attention 0 0 0
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech Exposición oral e mediante o uso de medios audiovisuais.
Laboratory practice Desenrolo de prácticas de aplicación dos coñecementos teóricos adquiridos. Manexo do software de simulación e deseño de circuitos dixitais.
Problem solving Traballos de realización individual ou en grupo para o deseño dun circuito de complexidade media.
Mixed objective/subjective test Probas de evaluación que poderán incluir preguntas sobre dos contidos teóricos da asignatura, así como exercicios ou problemas relacionados cos seus contidos.

Personalized attention
Methodologies
Guest lecture / keynote speech
Laboratory practice
Problem solving
Description
Os profesores atenderán persoalmente as dúbidas sobre calquera das actividades desenvolvidas ao longo do curso. O horario de tutorías será publicado ao comezo do cuadrimestre na páxina web do centro.

Assessment
Methodologies Competencies Description Qualification
Problem solving A30 A31 B1 B2 B3 B4 B5 B6 Work designing a digital system of medium complexity. The correct application of theoretical concepts to the work performed will be evaluated. It is necessary to submit an explanatory report, make an oral presentation and answer correctly the questions made by the teachers. 40
Mixed objective/subjective test A26 A30 B1 There will be 2 objective tests to be performed individually for each student.

The first will take place once explained the first 5 issues. It will mean the 30% of the final grade.

The second test will be the final exam 1st opportunity and can have the following weights:
- 30% for those students who decide to do the test of the second part.
- 60% for those students who decide to do the test of the first and second parts. In that case, the grade obtained in the first objective test is discarded.
60
 
Assessment comments

The scores for the evaluable tasks are only valid for the academic year in which they are made.

Objective tests may include short-answer questions and / or test, problem solving on paper or circuit design with the ISE software.

To achieve maximum grade at project, the following issues will be considered:

- The designed circuits must work perfectly
in all its aspects (functional and temporal simulation).

- The documentation and presentation must be clear.

- The students must explain the reasons to make the design and answer correctly the questions made by the teacher regarding the project.

Final grade

The final grade is usually  calculated as:

 Final grade = 0.3  x objective test 1 grade + 0.4 x project grade + 0,3 x objective test 2 grade 

Those students who do not have qualification in the 1st objective test, or, to resort very low scores can choose to make the 2nd objective test (the test will be different in this case). In this case the final grade will be:

Final grade= 0.4 x project grade + 0,6 x objective test 2 grade

Second opportunity

The second time, an objective test that can consist of theoretical and practical questions, written exercises, issues and implementation of a circuit in one of the Laboratory boards will be performed.


Sources of information
Basic Jacobo Álvarez Ruiz de Ojeda (2012). Diseño digital con FPGAs. Madrid : Vision Ebooks
Jacobo Álvarez Ruiz de Ojeda (2004). Diseño Digital con Lógica Programable. Santiago de Compostela. Tórculo

Complementary Roy W. Goody (2001). OrCAD PSpice for Windows. Prentice Hall
Tocci. Ronald J. (1996). Sistemas Digitales. Prentice Hall


Recommendations
Subjects that it is recommended to have taken before
Fundamentals of Electricity/770G01013
Fundamentals of Electronic Circuits/770G01018
Analog Electronics/770G01022
Digital Electronics/770G01023

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Digital Systems II/770G01034

Other comments

Nesta asignatura dase por suposto que o alumno sabe programar en linguaxe VHDL, e manexa o entorno de deseño ISE Web Pack de Xilinx, polo que para matricularse con posibilidades de éxito é preciso haber cursado con aproveitamento Electrónica Dixital, ou ben haber adquirido esos coñecementos previamente.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.