Teaching GuideTerm
Faculty of Computer Science
  Home | galego | castellano | english | A A |  
Mestrado Universitario en Bioinformática para Ciencias da Saúde
 Subjects
  Probabilidade. estatística e elementos de biomatemática
   Contents
Topic Sub-topic
1. Basic concepts of probability and statistics revisited.
a. Probability. Random variables and main discrete and continuous distributions. Multivariate distributions.
b. Statistical inference: estimation, hypothesis testing and confidence intervals.
2. R statistical programming language revisited. a. Introduction to R. First steps. Internal functions. Help in R. Functions, loops, vectors. Statistical functions. Plots.
Recursivity.
b. Main probability distributions in R.
c. Introduction to simulation in R.
d. R-Commander.
e. Descriptive statistics in R.
f. Hipothesis testing and confidence intervals with R-Commander.
3. Linear statistical models. a. The simple linear regression model. Basic assumptions. Estimation. Testing. Prediction. Model diagnostics.
b. The multivariate linear regression model. Basic assumptions. Estimation. Testing. Prediction. Model diagnostics.
c. Basic models in experimental desing. One-way and two-way Analysis of Varianza (ANOVA), with or without interaction. Basic assumptions. Estimation. Testing. Model diagnostics.
d. The multiple testing problem. False discovery rate.
4. Introduction to stochastic processes. a. Simple random walk.
b. Poisson process and renewal processes. Birth-death processes.
c. Markov processes. Markov Chains.
5. Introduction to resampling methods. a. The uniform Bootstrap. Computing the bootstrap distribution: exact distribution and aproximated distribution using Monte Carlo. Examples. Aplication of the bootstrap for estimating the precision and the bias of an estimator.
b. The Jackknife method. Estimating the bias and the variance of an estimator.
c. Bootstrap methods to construct confidence intervals: percentile method, percentil-t method, simmetrized percentil-t method. Examples.
Estudos de simulación.
d. Análise de supervivencia. O bootstrap para datos censurados.
6. Numerical methods for optimization revisited. a. Numerical optimization in one variable. Newton method. Secant method. Quadratic and cubic interpolation.
b. Numerical optimization in several variables. Random search. Grid search. Univariate search. Flexible simplex. Conjugated directions. Gradient method. Conjugated gradient method.
Universidade da Coruña - Rúa Maestranza 9, 15001 A Coruña - Tel. +34 981 16 70 00  Soporte Guías Docentes