Teaching GuideTerm
Higher Polytechnic University College
  Home | galego | castellano | english | A A |  
Grao en Enxeñaría Mecánica
 Subjects
  Thermodynamics
   Contents
Topic Sub-topic
Os bloques ou temas seguintes desenrolan os contidos establecidos na ficha da Memoria de Verificación, que son: Introdución
Conservación da enerxía
Propiedades das sustancias puras
Análise de volume de control
Segundo principio. Entropía
Análise exerxética
1. Introduction to Thermodynamics
Applications of Thermodynamics. Continuum medium. Basic concepts: system, surroundings, state, thermodynamical property, equilibrium. Characterization and measurement of primitive properties: pressure, volume, temperature. Temperature scale. Gas thermometer.
2. Work, energy and the 1st law of Thermodynamics (conservation of energy) Review of mechanical concepts of energy. Examples: energy balance. Concept of work. Electric work. Examples. Cuasi-equilibrium processes and work. Heat iteration. Examples of heat and work. Internal energy and total energy. Conservation of energy. Heat transfer at constant pressure and volume. Enthalpy. Internal energy and enthalpy of ideal gasses and compressible flows. Tables of ideal gasses.
3. Propiedades de una sustancia pura Ideal gas equation of state and characterization of the state using two independent properties. Incompressible flows. Phase diagrams and phases of a pure substance. Pure simple compressible substances. Characterization of pure simple compressible substances. Equation of state and thermodynamical surfaces. (p, v) and (T, v) diagrams of a pure simple compressible substance. Tables of thermodynamic properties and reference states for water refrigerants. Examples.
4. Conservation of energy and 1st law of Thermodynamics Vapor turbines, hydraulic turbines, compressors, nozzles, heat exchangers. Concept of control volume (open system). Conservation of mass. Examples. Conservation of energy and input/output works. Conservation of mass and energy applied to thermal machines. Steady and transient states. Filling and emptying of tanks.
5. 2nd law of Thermodynamics and introduction to thermodynamic cycles Concept of reversibility. Irreversible processes. Spontaneous processes. Internally reversible processes. Thermal reservoir. Power cycles and refrigerators. Efficiency and coefficient of performance (COP). 2nd law of Thermodynamics: Kelvin-Plank and Clausius statements. Equivalence between both statements. Carnot cycle of an ideal gas inside a cylinder-piston system. Efficiency of a reversible power cycle.
Corollaries of the 2nd law of thermodynamics. Kelvin temperature scale. Clausius inequality.
6. Entropy Analogy between work-pressure and heat-temperature in reversible process. Entropy as thermodynamic property. Thermodynamic equations related to entropy. Equations for ideal gasses. Tables of properties for pure simple compressible substances. (T, s) and (h, s) diagrams. Generation of entropy in irreversible processes. Generation and transfer of entropy. Open system. Application to thermal machines. Efficiency in thermal machines: compressors, pumps, turbines, nozzles. Applications.
Universidade da Coruña - Rúa Maestranza 9, 15001 A Coruña - Tel. +34 981 16 70 00  Soporte Guías Docentes